Crash Course: Artificial Intelligence

https://nerdfighteria.info/v/0i0JXUuL19TA

https://youtube.com/watch?v=0i0JXuL19TA

Natural Language Processing: Crash Course Al #7

Thanks to Curiosity Stream for supporting PBS Digital Studios. Hey,
I'm Jabril and welcome to Crashcourse Al. Language is one of the
most impressive things humans do. It's how | am transferring
knowledge from my brain to yours right this second.

Languages come in many shapes and sizes. They can be spoken
or written and are made up of different components like sentences,
words, letters, and characters that vary across cultures. For
instance, English has 26 letters and Chinese has tens of thousands
of characters.

So far, a lot of the problems we've been solving with Al machine
learning technologies have involved processing images, but the
most common way that most of us interact with computers though,
is through language. We type questions into search engines. We
talk to our smart phones to(?~0:53) set alarms, and sometimes we
even get a little help with our Spanish homework from Google
translate.

So today we are going to explore the field of Natural Lanaguage
Processing. [Crash Course intro music] Natural Language
Processing, or NLP for short, mainly explores two big ideas. First,
there's Natural Langauge Understanding, or how we get meaning
out of combinations of letters. These are Al that filter your spam
emails, figure out if that Amazon search for "apple" was grocery or
computer shopping, or instruct your self-driving car how to get to a
friend's house.

And second, there's Natrual Language Generation, or how to
generate language from knowledge. These are Al that perform
translations, summarize documents, or chat with you. The key to
both problems is understanding the meaning of a word, which is
tricky because words have no meaning on their own.

We assign meaning to symbols. To make things even harder in
many cases language can be ambiguous, and the meaning of a
word depends on the context it's used in. If | tell you to meet me at
the bank, without a context

| could mean the riverbank, or the place where I'm grabbing some
cash. If | say "This fridge is great!" [enthusiastically], that's a totally
different meaning from [sarcastically] "This fridge is great, it lasted a
whole week before breaking." So, how do we learn to attach
meaning to sounds? How do we know "Great" [upbeat] means
something totally different from "Great" [disappointed]? Well, even
though there is nothing inherent in the word “cat" that tells us that
it's soft, purrs, and chases mice, when we were kids someone
probably told us that "This is a cat.” Or, a "gato," "mao," "billie," or
"qut".

When we're solving a natural language processing problem,
whether it is natural language understanding or natural language
generation, we have to think about how our Al is going to learn the
meaning of words and understand our potential mistakes.
Sometimes, we can compare words by looking at the letters they
share. This works well if a words has morphology.

Take the root word "swim" for example. We can modify it with rules.
So, if someone's doing it right now they're "swimme-ing." Or, the
person doing the action is the "swim-er". "Drink-ing," "drink-er."
"Think-ing," "think-er"-- you get the idea.

But, we can't use morphology for all words. Like how knowing that a
"van" is a "vehicle" doesn't let us know that a "vandal" smashed in a
window. Many words that are really similar, like "cat" and "car," are

completely unrelated.

And on the other hand, "cat" and “felidae," the word for the scientific
family of cats, mean very similar things and only share one letter.
One common way to guess that words have similar meaning is
using Distributional Semantics. Or, seeing which words appear in
the same sentences a lot.

This is one of the many cases where NLP relies on insights from
the field of Linguistics. As the linguist John Firth once said: "You
shall know a word by the company it keeps." But, to make
computers understand distributional semantics, we have to express
the concept in math. One simple technique is to use Count
Vectors. A count vector is the number of times a word appears in
the same article or sentence as other common words.

If two words show up in the same sentence, they probably have
pretty similar meanings. So let's say we asked an algorithm to
compare three words, car, cat, and Felidae, using count vectors to
guess which ones have similar meaning. We could download the
beginning of the Wikipedia pages for each word to see which /other/
words show up.

Here’s what we got: And a lot of the top words are all the same:
the, and, of, in. These are all function words or stop words, which
help define the structure of language, and help convey precise
meaning. Like how “an apple” means any apple, but “the apple”
specifies one in particular.

But, because they change the meaning of another word, they don’t
have much meaning by themselves, so we’ll remove them for now,
and simplify plurals and conjugations. Let’s try it again: Based on
this, it looks like cat and Felidae mean almost the same thing,
because they both show up with lots of the same words in their
Wikipedia articles! And neither of them mean the same thing as car.

But this is also a really simplified example. One of the problems
with count vectors is that we have to store a LOT of data. To
compare a bunch of words using counts like this, we'd need a
massive list of every word we've ever seen in the same sentence,
and that's unmanageable.

So, we'd like to learn a representation for words that captures all
the same relationships and similarities as count vectors but is much
more compact. In the unsupervised learning episode, we talked
about how to compare images by building representations of those
images. We needed a model that could build internal
representations and that could generate predictions.

And we can do the same thing for words. This is called an encoder-
decoder model: the encoder tells us what we should think and
remember about what we just read... and the decoder uses that
thought to decide what we want to say or do. We're going to start
with a simple version of this framework.

Let's create a little game of fill in the blank to see what basic pieces
we need to train an unsupervised learning model. This is a simple
task called language modeling. If | have the sentence: I'm kinda
hungry, | think I'd like some chocolate

What are the most likely words that can go in that spot? And how
might we train a model to encode the sentence and decode a guess
for the blank? In this example, | can guess the answer might be
“cake” or “milk” but probably not something like “potatoes,”

because I've never heard of “chocolate potatoes” so they probably
don’t exist.

Definitely don't exist. That should not be a thing. The group of
words that can fill in that blank is an unsupervised cluster that an Al

1/2



Crash Course: Artificial Intelligence

https://nerdfighteria.info/v/0i0JXUuL19TA

https://youtube.com/watch?v=0i0JXuL19TA

Natural Language Processing: Crash Course Al #7

could use.

So for this sentence, our encoder might only need to focus on the
word chocolate so the decoder has a cluster of “chocolate food
words” to pull from to fill in the blank. Now let’s try a harder
example: Dianna, a friend of mine from San Diego who really loves
physics, is having a birthday party next week, so | want to find a
presentfor . When | read this sentence, my brain identifies and
remembers two things: First, that we're talking about Dianna from
27 words ago!

And second, that my friend Dianna uses the pronoun “her.” That
means we want our encoder to build a representation that captures
all these pieces of information from the sentence, so the decoder
can choose the right word for the blank. And if we keep the
sentence going: Dianna, a friend of mine from San Diego who really
loves physics, is having a birthday party next week, so | want to find
a present for her that has to do with . Now, | can remember
that Dianna likes physics from earlier in the sentence.

So we'd like our encoder to remember that too, so that the decoder
can use that information to guess the answer. So we can see how
the representation the model builds really has to remember key
details of what we've said or heard. And there’s a limit to how
much a model can remember.

Professor Ray Mooney has famously said that we'll “never fit the
whole meaning of a sentence into a single vector” and we still don’t
know if we can. Professor Mooney may be right, but that doesn’t
mean we can’t make something useful. So so far we've been

using words.

But computers don’t work words quite like this. So let's step away
from our high level view of language modeling and try to predict the
next word in a sentence anyway with a neural network. To do this,
our data will be lots of sentences we collect from things like
someone speaking or text from books.

Then, for each word in every sentence, we'll play a game of fill-in-
the-blank. We'll train a model to encode up to that blank and then
predict the word that should go there. And since we have the whole
sentence, we know the correct answer.

First, we need to define the encoder. We need a model that can
read in the input, which in this case is a sentence. To do this, we’'ll
use a type of neural network called a Recurrent Neural Network or
RNN.

RNNSs have a loop in them that lets them reuse a single hidden
layer, which gets updated as the model reads one word at a time.
Slowly, the model builds up an understanding of the whole
sentence, including which words came first or last, which words are
modifying other words, and a whole bunch of other grammatical
properties that are linked to meaning. Now, we can't just directly
put words inside a network.

But we also don’t have features we can easily measure and give
the model either. Unlike images, we can’'t even measure pixel
values. So we're going to ask the model to learn the right
representation for a word on its own (this is where the unsupervised
learning comes in).

To do this, we’'ll start off by assigning each word a random
representation -- in this case a random list of numbers called a
vector. Next, our encoder will take in each of those representations
and combine them into a single /shared/ representation for the
whole sentence. At this point, our representation might be
gibberish, but in order to train the RNN, we need it to make
predictions.

For this particular problem, we’ll consider a very simple decoder, a
single layer network that takes in the sentence representation
vector, and then outputs a score for every possible word in our
vocabulary. We can then interpret the highest scored word as our
model’'s prediction. Then, we can use backpropagation to train the
RNN, like we've done before with neural networks in Crash Course
Al

So by training the model on which word to predict next, the model
learn weights for the encoder RNN and the decoder prediction
layer. Plus, the model changes those random representations we
gave every word at the beginning. Specifically, if two words mean
something similar, the model makes their vectors more similar.

Using the vectors to help make a plot, we can actually visualize
word representations. For example, earlier we talked about
chocolate and physics, so let’s look at some word representations
that researchers at Google trained. Near “chocolate,” we have lots
of foods like cocoa and candy: By comparison, words with similar
representations to “physics” are newton and universe.

This whole process has used unsupervised learning, and it's given
us a basic way to learn some pretty interesting linguistic
representations and word clusters. But taking in part of a sentence
and predicting the next word is just the tip of the iceberg for NLP. If
our model took in English and produced Spanish, we'd have a
translation system.

Or our model could read questions and produce answers, like Siri
or Alexa try to do. Or our model could convert instructions into
actions to control a household robot ... Hey John Green Bot? Just
kidding you're your own robot.

Nobody controls you. But the representations of words that our
model learns for one kind of task might not work for others. Like, for
example, if we trained John-Green-bot based on reading a bunch of
cooking recipes, he might learn that roses are made of icing and
placed on cakes.

But he won't learn that cake roses are different from real roses that
have thorns and make a pretty bouquet. Acquiring, encoding, and
using written or spoken knowledge to help people is a huge and
exciting task, because we use language for so many things! Every
time you type or talk to a computer, phone or other gadget, NLP is
there.

Now that we understand the basics, next week we’ll dive in and
build a language model together in our second lab! See you then.
Thank you to CuriosityStream for supporting PBS Digital Studios.

CuriosityStream is a subscription streaming service that offers
documentaries and non-fiction titles from a variety of filmmakers,
including CuriosityStream originals. For example, you can stream
Dream the Future in which host Sigourney Weaver asks the
guestion, “What will the future look like?” as she examines how
new discoveries and research will impact our everyday lives in the
year 2050. You can learn more at curiositystream.com/crashcourse
Or click the link in the description.

Crash Course Ai is produced in association with PBS Digital
Studios! If you want to help keep Crash Course free for everyone,
forever, you can join our community on Patreon. And if you want to
learn more about how human brains process language, check out
this episode of Crash Course Psychology.

2/2


http://www.tcpdf.org

