
AI Playing Games: Crash Course AI #12
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=nw7zmdBLQ6U
https://nerdfighteria.info/v/nw7zmdBLQ6U

===== (00:00) to (02:00) =====

Jabril: D-7

John Green-Bot: Miss.  I-9?

J: Noooo!

(Intro)

J: Hey, I'm Jabril, and welcome to Crash Course: AI.  John Green-
Bot might struggle with some things like natural language
processing and moving (?~0:48) but using AI, he's pretty good at
boardgames.  AI researchers spent a lot of time trying to teach AI
how to beat humans at games, and this isn't just because games
are fun.  Games provide constrained scenarios for testing new AI
algorithms and approaches.  In a game, it's easy to know whether
the AI is winning or losing, because there's usually a score or some
objective measure of winning.  This is great because AI learns from
examples, trying things out, and slowly improving.  Games basically
provide their own training data, which is a big relief, because AI
systems need lots of training data to get really good.

An AI can even play games itself to generate training data and
involve better game strategies, or an AI can be programmed to look
at previous games, even games played by expert humans for
strategies that lead to victory.  Comparing AIs against expert human
gamers can also help us figure out how an AI is improving over
time.  This comparison also gives us a sense of the difficulty of
problems an AI can solve.  In other words, if I can teach John
Green-bot to beat me at Battleship, I probably can also teach him to
beat me at any game that's simpler than Battleship.

Finally, games are cool, and that's important, too.  Sometimes, AI
programming can feel a bit difficult to drive because of all the math
and troubleshooting, and games can provide a fun motivation to
learn all this stuff.

===== (02:00) to (04:00) =====

This is the reason why some of my first AI demos were games.  For
all these reasons, games and computing have a rich history that's
worth diving into.  For that, let's go to the Thought Bubble.

Humans have always been fascinated by the idea that machines
could beat us at our own strategy games.  In 1770, the inventor
Wolfgang von Kempelen revealed an invention to the Empress
Maria Teresa of Austria.  The mechanical turk was a clock-like
contraction that appeared to play chess.  Chess pieces were
attached to rods that were hooked into a bathtub-sized box.  After
Empress Maria made a move on the board, she turned a crank that
activated the machine, which would move chess pieces
mechanically.  To her surprise, the machine was able to beat most
challengers.  However, it was an elaborate hoax and the
mechanical turk was actually controlled by a person hidden inside.

Getting a machine to play chess is actually really complicated, so
when AI researchers first tried to tackle the problem in the late
1940s and early 1950s, they focused on simpler chess situations,
like games with only a few pieces remaining on the board or full
games played on a small 6x6 board without any bishops.  At the
same time, researchers worked on an AI that could play checkers,
because checkers looked easier, although it was almost as
complicated.  The first program to play a legitimate game of
checkers was built by IBM in 1956 and in a classic Cold War move,
two programs that could play a full game of chess were developed
in parallel by the US and Russia in 1957, but these programs didn't
get good for another 40 years.  

Checkers was first, with a program called Chinook, which started
dominating masters in 1995, and chess followed when a computer
called Deep Blue beat the chess master Garry Kasparov in 1997. 
Thanks, Thought Bubble. 

Since then, strategy games have been mastered one by one, with
the most recent victories over humans at Go in 2017, Dota 2 in
2018, and Starcraft 2 in 2019.  Okay, so the best way to understand
the difficulty of teaching AIs to play games is through an example.

===== (04:00) to (06:00) =====

Oh, John Green-Bot.  So, let's start with the really simple goal, like
teaching John Green-Bot here how to play Tic-Tac-Toe.  One of the
ways we can think about playing Tic-Tac-Toe is as a tree with all
the possible moves of any given state of what the gameboard looks
like.  For example, if this is the current game state, it's John Green-
Bot's turn and he's using Xs, there are three places he can go.  We
can draw a tree representing all possible outcomes for each of
these options, and all the options his opponent, me or anyone else,
can take.  Because computers think with numbers, each outcome
can be assigned a reward.  A number like a 1 for a win and -1 for a
loss or a tie.  Basically, John Green-Bot will need to search through
the tree of possibilities to find his win. 

To decide which choice to make, John Green-Bot will assume that
in each tree, both he and his opponent will make the best possible
choices.  In other words, his policy or his framework for making
decisions, will alternate between choosing the branch that will
maximize the outcome of winning on his turn and minimize the
outcome of his opponent winning on their turn.  This is called the
minimax algorithm.  Then, each gamestate can be assigned a value
based on how likely it leads to John Green-Bot winning and he can
decide which move to make based on his policy.  

Looking at this tree, John Green-Bot will always pick option 1.0 and
win the game.  Of course, this is a pretty small tree because we
were looking at a game already in progress.  To draw the whole Tic-
Tac-Toe tree from beginning to end, we'd need to represent about
250,000 boards.  Now, that seems like a lot, but it would take like,
half a second for a powerful modern computer to compute this
many options.  By laying out all the possibilities and taking the
paths that led to a win, John Green-Bot can solve Tic-Tac-Toe.  

===== (06:00) to (08:00) =====

This means that John Green-Bot will always achieve the best
possible outcome, either a win or tie, no matter how his opponent
plays.  Thanks, John Green-Bot.  

But we can't solve all games this way.  Checkers, for example, has
about 1020 board states, or 10 followed by 20 zeros.  That's more
board states than there are grains of sand on Earth.  Chess has
1050 board states, and Go has 10250 board states.  To put those
huge numbers into perspective, there are only 1080 atoms in the
entire known universe.  Computer scientists have theorized that it
would be impossible for conventional computers to calculate this
many states due to the laws of physics.  

Like, for example, if you combined all of the planets and stars and
everything in the whole universe into a single supercomputer, it still
wouldn't be powerful enough to solve the game of Go, but some
people have hope that quantum computers may be able to get there
someday.  So, if figuring out all the board states could be
mathematically impossible, how did computers beat the number
one ranked human masters in Chess and Go?

Many modern systems, including Google's AlphaGo computer that
beat a human master in Go in 2017 use an algorithm called Monte

                               1 / 2



AI Playing Games: Crash Course AI #12
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=nw7zmdBLQ6U
https://nerdfighteria.info/v/nw7zmdBLQ6U

Carlo Tree Search.  Monte Carlo is a famous casino, so whenever
you see the term Monte Carlo, it's a good bet that the algorithm will
be using randomness and chance to solve a problem.  

Combining Monte Carlo randomness and regular tree search like
Minimax, modern game AIs decide which part of the huge tree to
search by guessing at odds.  Basically, they want higher odds at the
part of the tree they search will lead to a win, but these aren't just
random guesses like we would make in many casino games.  AI
systems simulate millions of what-if scenarios and use math to
estimate the likelihood of winning if they choose one path or
another.  

===== (08:00) to (10:00) =====

In each what-if scenario, the AI considers making one particular
move and then simulates playing a large number of, but not all,
possible games where the next moves are chosen at random.  By
averaging these possible outcomes, the AI estimates how good that
particular move is.  It's so much faster to estimate a handful of
choices than exhaustively calculate each branch of the game tree,
and some computers can even do this estimation in real time.  

One example fo this is Google's Deepmind, which defeated human
professional players at Starcraft 2 in 2019, where time is very
critical.  Of course, Starcraft 2, Go, and Tic-Tac-Toe, aren't all the
types of games that humans play.  Other games require other
strategies and have other computational challenges.

IBM's Watson's question answering system was able to beat human
Jeopardy champions in two televised matches in 2011.  Watson
listened for key words in the clue and tried to use a knowledge
graph to figure out responses and we'll talk more about knowledge
graphs in a future episode.  Watson wasn't perfect and struggled a
bit with context.  For example, it famously guessed 'What is
Toronto?' on something in the category US Cities, but Watson was
still able to do better than human contestants overall.  

Evolutionary neural networks use the environment as an input, like
reinforcement learning, but this approach introduces multiple agents
who try multiple neural network structures and then build on
successful ones for the next generation, sorta like animals.  The
ones that are better at surviving get to pass on their genes.  For
example, the AI mar.io can learn how to play a Super Mario World
level by telling mar.io what buttons it can push and that getting
further to the right in the level is good.  This AI will start by basically
mashing buttons at random, but as some button mashes get it
further to the right, it remembers and learns from those successful
attempts.

In the next lab, we'll build our own AI to use this approach to crush
a video game that we've built where John Green-bot destroys trash.

So, are there any games that are safe to play, where humans will
always have an edge and AI won't be able to beat us?

===== (10:00) to (11:31) =====

Computers definitely seem to struggle with parts of language, like
humor, irony, metaphor, and wordplay.  Computers also aren't great
at understanding and predicting real people who don't always act
optimally, so social games could be more difficult, too, but AI
systems are finding some success in bluffing games like online
poker, so it's important to not underestimate them.

John Green-bot: All in.  

J: Computers might also struggle with creativity or surprise,
because there's not a really clear way to assign values of states. 

It's really difficult to assign a number to how creative something is
compared to saying 'go as far right as you can' in the Mario level or
'achieve a winning state' in a game of chess.  So considering all of
that, maybe games like charades will be pretty stacked for human
victory, or what about Pictionary?  Maybe hide and seek?  We'd
love to hear in the comments what games you think are safe from
AI, but in the next episode, which is another lab, we'll program an AI
system to learn how to play an arcade game and I'll beg John Gree-
bot for my poker money back. 

See you then.

Crash Course is produced in association with PBS Digital Studios. 
If you want to help keep Crash Course free for everyone forever,
you can join our community on Patreon, and if you want to learn
more about the history of games, we have a whole series about
that.

Powered by TCPDF (www.tcpdf.org)

                               2 / 2

http://www.tcpdf.org

