Crash Course: Artificial Intelligence
https://youtube.com/watch?v=nlIglv4lfJ6s
https://nerdfighteria.info/v/niglv4lfJ6s

Reinforcement Learning: Crash Course Al#9

Hey, I'm Jabril and welcome to Crash Course Al.

Say | want to get a cookie from a jar that's on a tall shelf. There
isn’'t one “right way” to get the cookies.

Maybe | find a ladder, use a lasso, or build a complicated system of
pulleys. These could all be brilliant or terrible ideas, but if something
works, | get the sweet taste of victory... and | learn that doing that
same thing could get me another cookie in the future. We learn lots
of things by trial-and-error, and this kind of “learning by doing” to
achieve complicated goals is called Reinforcement Learning.

INTRO So far, we've talked about two types of learning in Crash
Course Al: Supervised Learning, where a teacher gives an Al
answers to learn from, and Unsupervised Learning, where an Al
tries to find patterns in the world. Reinforcement Learning is
particularly useful for situations where we want to train Als to have
certain skills we don’t fully understand ourselves. For example, I'm
pretty good at walking, but trying to explain the process of walking
is kind of difficult.

What angle should your femur be relative to your foot? And should

you move it with an average angular velocity of... yeah, never mind...

its really difficult. With reinforcement learning, we can train Als to
perform complicated tasks.

But unlike other techniques, we only have to tell them at the very
end of the task if they succeeded, and then ask them to tell us how
they did it. (We're going to focus on this general case, but
sometimes this feedback could come earlier. So if we want an Al to
learn to walk, we give them a reward if they’re both standing up
and moving forward, and then figure out what steps they took to get
to that point. The longer the Al stands up and moves forward, the
longer it's walking, and the more reward it gets.

So you can kind of see how the key to reinforcement learning is just
trial-and-error, again and again. For humans, a reward might be a
cookie or the joy of winning a board game. But for an Al system, a
reward is just a small positive signal that basically tells it “good job”
and “do that again”!

Google Deepmind got some pretty impressive results when they
used reinforcement learning to teach virtual Al systems to walk,
jump, and even duck under obstacles. It looks kinda silly, but works
pretty well! Other researchers have even helped real life robots
learn to walk.

So seeing the end result is pretty fun and can help us understand
the goals of reinforcement learning. But to really understand how
reinforcement learning works, we have to learn new language to
talk about these Al and what they’re doing. Similar to previous
episodes, we have an Al (or Agent) as our loyal subject that's
going to learn.

An agent makes predictions or performs Actions, like moving a tiny
bit forward, or picking the next best move in a game. And it
performs actions based on its current inputs, which we call the
State. In supervised learning, after /each/ action, we would have a
training label that tells our Al whether it did the right thing or not.

We can't do that here with reinforcement learning, because we
don’t know what the “right thing” actually is until it's completely
done with the task. This difference actually highlights one of the
hardest parts of reinforcement learning called credit assignment.
It's hard to know which actions helped us get to the reward (and
should get credit) and which actions slowed down our Al when we
don’t pause to think after every action.

So the agent ends up interacting with its Environment for a while,

whether that's a game board, a virtual maze, or real life kitchen.
And the agent takes many actions until it gets a Reward, which we
give out when it wins a game or gets that cookie jar from that really
tall shelf. Then, every time the agent wins (or succeeds at its task),
we can look back on the actions it took and slowly figure out which
game states were helpful and which weren't.

During this reflection, we're assigning Value to those different
game states and deciding on a Policy for which actions work best.
We need Values and Policies to get anything done in reinforcement
learning. Let’s say | see some food in the kitchen: a box, a small
bag, and a plate with a donut.

So my brain can assign each of these a value, a numerical yummy-
ness value. The box probably has 6 donuts in it, the bag probably
has 2, and the plate just has 1... so the values | assign are 6, 2, and
1. Now that I've assigned each of them a value, | can decide on a
policy to plan what action to take!

The simplest policy is to go to the highest value (that box of
possibly 6 donuts). But | can’t see inside of it, and that could be a
box of bagels, so it's high reward but high risk. Another policy could
be low reward but low risk, going with the plate with 1 guaranteed
delicious donut.

Personally, I'd pick a middle-ground policy, and go for the bag
because | have a better chance of guessing that there are donuts
inside than the box, and a value of 1 donut isn’t enough. That's a
lot of vocab, so let's see these concepts in action to help us
remember everything. Our example is going to focus on a
mathematical framework that could be used with different
underlying machine learning techniques.

Let's say John-Green-bot wants to go to the charging station to
recharge his batteries. In this example, John-Green-bot is a brand
new Agent, and the room is the Environment he needs to learn
about. From where he is now in the room, he has four possible
Actions: moving up, down, left, or right.

And his State is a couple of different inputs: where he is, where he
came from, and what he sees. For this example, we’'ll assume John-
Green-bot can see the whole room. So when he moves up (or any
direction), his state changes.

But he doesn’t know yet if moving up was a good idea, because he
hasn’t reached a goal. So go on, John-Green-bot... explore! He
found the battery, so he got a Reward (that little plus one).

Now, we can look back at the path he took and give all the cells he
walked through a Value -- specifically, a higher value for those near
the goal, and lower for those farther away. These higher and lower
values help with the trial-and-error of reinforcement learning, and
they give our agent more information about better actions to take
when he tries again! So if we put John-Green-bot back at the start,
he’ll want to decide on a Policy that maximizes reward.

Since he already knows a path to the battery, he’ll walk along that
path, and he’s guaranteed another +1. But that's... too easy. And
kind of boring if John-Green-bot just takes the same long and
winding path every time.

So another important concept in reinforcement learning is the trade-
off between exploitation and exploration. Now that John-Green-bot
knows one way to get to the battery, he could just exploit this
knowledge by always taking the same 10 actions. It's not a terrible
idea -- he knows he won't get lost and he’ll definitely get a reward.

But this 10-action path is also pretty inefficient, and there are
probably more efficient paths out there. So exploitation may not be

1/2

Crash Course: Artificial Intelligence
https://youtube.com/watch?v=nlIglv4lfJ6s
https://nerdfighteria.info/v/niglv4lfJ6s

Reinforcement Learning: Crash Course Al#9

the best strategy. It's usually worth trying lots of different actions to
see what happens, which is a strategy called exploration.

Every new path John-Green-bot takes will give him a bit more data
about the best way to get a reward. So let’s let John-Green-bot
explore for 100 actions, and after he completes a path, we’ll update
the values of the cells he’s been to. Now we can look at all these
new values!

During exploration, John-Green-bot found a short-cut, so now he
knows a path that only takes 4 actions to get to the goal. This
means our new policy (which always chooses the best value for the
next action) will take John-Green-bot down this faster path to the
target. That's much better than before, but we paid a cost, because
during those 100 actions of exploration, he took some paths that
were even /more/ inefficient than the first 10-action try and only got
a total of 6 points.

If John-Green-bot had just exploited his knowledge of the first path
he took for those 100 actions, he could have made it to the battery
10 times and gotten 10 points. So you could say that exploration
was a waste of time. BUT if we started a new competition between
the new John-Green-bot (who knows a 4-action path) and his
younger, more foolish self (who knows a 10-action path), over 100
actions, the new John-Green-bot would be able to get 25 points
because his path is much faster.

His reinforcement learning helped! So should we explore more to
try and find an even better path? Or should we just use exploitation
right away to collect more points?

In many reinforcement learning problems, we need a balance of
exploitation and exploration, and people are actively researching
this trade-off. These kinds of problems can get even more
complicated if we add different kinds of rewards, like a +1 battery
and a +3 bigger battery. Or there could even be Negative Rewards
that John-Green-Bot needs to learn to avoid, like this black hole.

If we let John-Green-Bot explore this new environment using
reinforcement learning, sometimes he falls into the black hole. So
the cells will end up having different values than the earlier
environment, and there could be a different best policy. Plus, the
whole environment could change in many of these problems.

If we have an Al in our car helping us drive home, the same road
will have different people, bicycles, cars, and black holes on it every
day. There might even be construction that completely reroutes us.
This is where reinforcement learning problems get more fun, but
much harder.

When John-Green-bot was learning how to navigate on that small
grid, cells closer to the battery had higher values than those far
away. But for many problems, we’ll want to use a value function to
think about what we’ve done so far, and decide on the next move
using math. For example, in this situation where an Al is helping us
drive home, if we're optimizing safety and we see the brake lights
of the car in front of us, it's probably time to slow down, but if we
saw a bag of donuts in the street, we would want to stop.

So reinforcement learning is a powerful tool that's been around for
decades, but a lot of problems need a ton of data and a ton of time
to solve. There have been really impressive results recently thanks
to deep reinforcement learning on large-scale computing. These
systems can explore massive environments and a huge number of
states, leading to results like Als learning to play games.

At the core of a lot of these problems are discrete symbols, like a
command for forward or the squares on a game board, so how to
reason and plan in these spaces is a key part of Al. Next week,

we'll dive into symbolic Al and how it's a powerful tool for systems
we use every day. See you then.

Crash Course Ai is produced in association with PBS Digital
Studios. If you want to help keep Crash Course free for everyone,
forever, you can join our community on Patreon. And if you want to
learn other approaches to control robot behavior check out this
video on Crash Course Computer Science.

2/2

http://www.tcpdf.org

