
Let's make an AI that destroys video games: Crash Course AI #13
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=osbmLJb2Tkc
https://nerdfighteria.info/v/osbmLJb2Tkc

===== (00:00) to (02:00) =====

J: John Green-Bot, are you serious? I made this game and you
beat my high score?

JGB: Pizza!

J: So, John Green-Bot is pretty good at Pizza Jump, but what about
this new game we made, Trashblaster?

JGB: Hey, that's me.

J: Yeah. Let's see what you got.

JGB: That's not fair, Jabril.

J: It's okay, John Green-Bot. We've got you covered. Today, we're
gonna design and build an AI program to help him play this game
like a pro.

(CrashCourse AI Intro)

Hey, I'm Jabril, and welcome to Crash Course AI. Last time, we
talked about some of the ways that AI systems learn to play
games. I've been playing video games for as long as I can
remember. They're fun, challenging, and tell interesting stories
where the player gets to jump on goombas, build cities, cross the
road, or flap a bird, but games are also a great way to test AI
techniques, because they usually involve simpler worlds than the
one we live in. Plus, games involve things that humans are often
pretty good at, like strategy, planning, coordination, deception,
reflexes, and intuition.

Recently, AIs have become good at some tough games, like Go or
StarCraft 2. So our goal today is to build an AI to play a video
game that our writing team and friends at Thought Cafe designed
called Trashblaster. The players goal in Trashblaster is to swim
through the ocean as a little virtual John Green-Bot and destroy
pieces of trash, but we have to be careful, because if John Green-
Bot touches a piece of trash, then he loses and the game restarts.

Like in previous labs, we'll be writing all the code using a language
called Python and a tool called Google Collaboratory, and as you
watch this video, you can follow along with the code in your browser
from the link we put in the description. In these Collaboratory files,
there's some regular text explaining what we're trying to do, and
pieces of code that you can run by pushing the play button.

===== (02:00) to (04:00) =====

These pieces of code build on each other so keep in mind that we
have to run them in order from top to bottom, otherwise we might
get an error. To actually run the code and experiment with
changing it, you have to either click open in playground at the top of
the page, or open the file menu and click 'Save a copy in Drive', and
just FYI, you'll need a Google account for this.

So to create this gamegplaying AI system, first, we need to build the
game and set up everything like the rules and graphics. Second,
we'll need to think about how to create a Trashblaster AI model that
can play the game and learn to get better, and third, we'll need to
train the model and evaluate how well it works.

Without a game, we can't do anything, so we've got to start by
generating all the pieces of one. To start, we're gonna need to fill
up our toolbox by importing some helpful libraries, such as
PyGame. The first step in 1.1 and 1.2 loads the libraries, and step
1.3 saves the game so we can watch it later. This might take a
second to download. The basic building blocks of any game are

different objects that interact with each other. There's usually
something or someone the player controls and enemies that you
battle. All these objects and interactions with each other needs to
be defined in the code, so to make Trashblaster, we need to define
three objects and what they do. A blaster, a hero, and trash to
destoy. The blaster is what actually destroys the trash, so we're
gonna load an image that looks like a laser ball and set some
properties. How far does it go? What direction does it fly? And
what happens to the blast when it hits a piece of trash?

Our hero is John Green-Bot. So now, we've got to load his image
and define properties like how fast he can swim and how a blast
appears when he uses his blaster, and we need to load an image
for the trash pieces, and then code how they move and what
happens when they get hit by a blast. Like, for example, total
destruction or splitting into two smaller pieces.

Finally, all these objects are floating in the ocean, so we need a
piece of code to generate the background. The shape of this
game's ocean is (?~4:08), which means it wraps around and if any
object flies off-screen to the right, then it will immediately appear on
the far left side.

Every game needs some way to track how the player is doing, so
we'll show the score, too.

===== (04:00) to (06:00) =====

Now that we have all the pieces in place, we can actually build the
game and decide how everything interacts. The key to how
everything fits together is the run function. It's a loop checking
whether the game is over, moving all the objects, updating the
game, checking whether our hero is okay, and making trash. As
long as our hero hasn't bumped into any trash, the game
continues. That's pretty much it for the game mechanics. We've
created a hero, a blaster, trash, a scoreboard, and code that
controls the interactions.

Step 2 is modeling the AI's brain, so John Green-bot can play, and
for that, we can turn back to our old friend, the neural network.
When I play games, I try and watch for the biggest threat, because I
don't wanna lose, so let's program John Green-bot to use a similar
strategy. For his neural network input layer, let's consider the five
pieces of trash that are closest to his avatar, and remember, the
closest trash might actually be on the other side of the screen.
Really, we want John Green-bot to pay attention to where the trash
is and where it's going. So, we want the X and Y positions and X
and Y velocities relative to the hero, and the size of each piece of
trash. That's five inputs for five pieces of trash, so our input layer is
gonna have 25 notes.

For the hidden layers, let's start small and create two layers with 15
nodes each. This is just a guess, so we can change it later if we
want. Because the output of this neural network is gameplay, we
want the output nodes to be connected to the movement of the hero
and shooting blasts, so there will be five nodes total: an X and Y for
movement, an X and Y direction frame in the blaster, and whether
or not to fire the blaster. To start, the weights of the neural network
are initalized to zero, so the first time John Green-bot plays, he
basically sits there and does nothing. To train its brain with regular
supervised learning, we'd normally say what the best action is at
each time step, but because losing Trashblaster depends on lots of
collective actions and mistakes, not just one key moment,
supervised learning might not be the right approach for us.

===== (06:00) to (08:00) =====

Instead, we'll use reinforcement learning strategies to train John
Green-bot based on all the moves he makes from the beginning to

 1 / 3

Let's make an AI that destroys video games: Crash Course AI #13
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=osbmLJb2Tkc
https://nerdfighteria.info/v/osbmLJb2Tkc

the end of the game, and we'll evolve a better AI using a genetic
algorithm which is commonly referred to as GA. To start, we'll
create some number of John Green-bots with empty brains. Let's
say 200, and we'll have them play Trashblaster. They're all pretty
terrible, but because of luck, some will probably be a little bit less
terrible. In biological evolution, parents pass on most of their
characteristics to their offspring when they reproduce, but the new
generation may have some small differences or mutations.

To replicate this process, we'll use code to take the hundred highest
scoring John Green-bots and clone each of them as a reproduction
step. Then, we'll slightly and randomly change the weights in those
100 clone neural networks, which is our mutation step. Right now,
we'll program a 5% chance that any given weight will be mutated
and randomly choose how much that weight mutates. So it could
be barely any change or a huge one, and you can experiment with
this if you like.

Mutation effects how much the AI changes overall, so it's a little bit
like the learning rate that we talked about in previous episodes. We
have to try and balance steadily improving each iteration with
making big changes that might be helpful or harmful. After we've
created these 100 mutant John Green-bots, we'll combine them
with the 100 unmutated original models, just in case the mutations
were harmful, and then have them all play the game. Then, we
evaluate, clone, and mutate them over and over again. Over time,
the genetic algorithm usually makes AI gradually better at whatever
they're being asked to do, like play Trashblaster. This is because
models with the better mutations will be more likely to score high
and reproduce in the future.

All of this stuff, from building John Green-bot's neural networks to
defining mutations for our genetic algorithm, are in this section of
the code.

===== (08:00) to (10:00) =====

After setting all that up, we have to write code to carefully define
what doing better at the game means. Destroying a bunch of
trash? Staying alive for a long time? Avoiding off-target blaster
shots? Together, these decisions about what better means defines
an AI model's fitnes. Programming this function is pretty much the
most important part of this lab, because how we define fitness will
affect how John Green-bot's AI will evolve. If we don't carefully
balance our fitness function, his AI could end up doing some pretty
weird things.

For example, we could just define fitness as how long the player
stays alive, but then John Green-bot's AI might play Trashavoider
and dodge trash instead of Trashblaster and destroy trash, but if we
define the fitness to only be related to how many trash pieces are
destroyed, we might get a wild hero that's constantly blasting. So
for now, I'm gonna try a fitness function that keeps the player alive
and blasts trash. We'll define the fitness as +1 for every second
that John Green-bot stays alive, and +10 for every piece of trash
that is zapped, but it's not as fun if the AI just blasts everywhere, so
let's add a penalty of -2 for every blast he fires.

The fitness for each John Green-bot AI will be updated continuously
as he plays the game, and it'll be shown on the scoreboard we
created earlier. You can take some time to play around with the
fitness function and watch how John Green-bot's AI can learn and
evolve differently.

Finally, we can move on to Step 3 and actually train John Green-
bot's AI to blast some trash. So first, we need to set up our game,
and to kick off the genetic algorithm, we have to find how many
randomly wired John Green-bot models we want to use in our
starting population. Let's just stick for 200 for now. If we waited for

each John Green-bot model to start, play, and lose the game, this
training could take days, but because our computer can multi-task,
we can use a multi-processing package to make all 200 AI models
play separate games at the same time, which will be much faster,
and this is all part of the training. This is where we'll code in the
details of the genetic algorithm, like sorting John Green-bots by
their fitness and choosing which ones will reproduce.

===== (10:00) to (12:00) =====

Now that we have the 100 John Green-bots we want to reproduce,
this code will clone and mutate them so that we have a combined
group of 100 old and 100 mutant AI models. Then, we can run 200
more games for these 200 John Green-bots. It just takes a few
seconds to go through them all, thanks to that last chunk of code,
and we can see how well they do. The average score of the AI
models that we picked to reproduce is almost twice as high as the
overall average, which is good. It means that John Green-bot is
learning something. We can even watch a replay of the best AI.

Uhh, even the best isn't very exciting right now. We can see the
fitness function changing as time passes, but the hero's just sitting
there, not getting hit and shooting forward. We want John Green-
bot to actually play, not just sit still and get lucky. We can also see
visual representations of the specific neural network, where higher
weights are represented by the redness of the connection. It's
tough to interpret exactly what this diagram means, but we can
keep it in mind as we continue to train John Green-bot.

Genetic algorithms take time to evolve a good model, so let's
change the number of iterations in the looping step 3.3, and run the
training step 10 times to repeatedly copy, mutate, and test the
fitness of these AI models. Okay, now we've trained for 10 more
iterations, and if we view a replay of the last game, we see that
John Green-bot is doing a little better. He's moving around and
actually sort of aiming. If we keep training, one model might get
lucky, destroy a bunch of trash, has a high fitness, and gets copied
and mutated to make future generations even better, but John
Green-bot needs lots of iterations to get really good at
Trashblaster. You might consider changing the number of iterations
to 50 or 100 times per click, which might take a while.

Now here's an example of the game after 15,600 training iterations.
Just look at John Green-bot swimming and blasting trash like a pro,
and all this was done by training a genetic algorithm, raw luck, and
a carefully crafted fitness function.

===== (12:00) to (13:27) =====

Genetic algorithms tend to work pretty well on small problems like
getting good at Trashblaster. When the problems get bigger, the
random mutations of genetic algorithms are sometimes, well, too
random to create consistently good results, so part of the reason
this worked so well is because John Green-bot's neural network is
pretty tiny compared to many AIs created for industrial-sized
problems. But still, it's fun to experiment with AI in games like
Trashblaster. For example, you can try and change the values of
the fitness function and see how John Green-bot's AI evolves
differently, or you can change how the neural network gets mutated,
like by messing with the structure instead of the weights, or you can
change how much the run function loops per second, from five
times a second to ten or twenty and give John Green-bot
superhuman reflexes.

You can download the clip of your AI playing Trashblaster by
looking for game_animation.gif in the file browser on the left-hand
side of the Collaboratory file. You can also download the source
code from GitHub to run on your computer if you wanna
experiment. We'll leave a link in the description.

 2 / 3

Let's make an AI that destroys video games: Crash Course AI #13
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=osbmLJb2Tkc
https://nerdfighteria.info/v/osbmLJb2Tkc

And next time, we'll start shifting away from games and learning
about other ways that humans and AI can work together in teams.
See you then.

Crash Course AI is produced in association with PBS Digital
Studios. If you wanna help keep Crash Course free for everyone,
forever, you can join our communit on Patreon, and if you wanna
learn more about evolution and genetics, check out Crash Course
Biology.

Powered by TCPDF (www.tcpdf.org)

 3 / 3

http://www.tcpdf.org

