
Training Neural Networks: Crash Course AI #4
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=lgKrup5oi_A
https://nerdfighteria.info/v/lgKrup5oi_A

Hey, I’m Jabril and welcome to Crash Course AI!

One way to make an artificial brain is by creating a neural network,
which can have millions of neurons and billions (or trillions) of
connections between them. Nowadays, some neural networks are
fast and big enough to do some tasks even better than humans
can, like for example playing chess or predicting the weather!

But as we’ve talked about in Crash Course AI, neural networks
don’t just work on their own. They need to learn to solve problems
by making mistakes. Sounds kind of like us, right?

INTRO Neural networks handle mistakes. using an algorithm called
backpropagation to make sure all the neurons that contributed to an
error get their math adjusted, and we’ll unpack this a bit later. And
neural networks have two main parts: the architecture and the
weights. The architecture includes neurons and their connections.

And the weights are numbers that fine-tune how the neurons do
their math to get an output. So if a neural network makes a mistake,
this often means that the weights aren’t adjusted correctly and we
need to update them so they make better predictions next time. The
task of finding the best weights for a neural network architecture is
called optimization.

And the best way to understand some basic principles of
optimization is with an example with the help of my pal John Green
Bot. Say that I manage a swimming pool, and I want to predict how
many people will come next week, so that I can schedule enough
lifeguards. A simple way to do this is by graphing some data points,
like the number of swimmers and the temperature in Fahrenheit for
every day over the past few weeks.

Then, we can look for a pattern in that graph to make predictions. A
way computers do this is with an optimization strategy called linear
regression. We start by drawing a random straight line on the
graph, which kind of fits the data points.

To optimize though, we need to know how incorrect this guess is.
So we calculate the distance between the line and each of the data
points, add it all up, and that gives us the error. We’re quantifying
how big of a mistake we made.

The goal of linear regression is to adjust the line to make the error
as small as possible. We want the line to fit the training data as
much as it can. The result is called the line of best fit.

We can use this straight line to predict how many swimmers will
show up for any temperature, but parts of it defy logic. For example,
super cold days have a negative number, while dangerously hot
days have way more people than the pool can handle. To get more
accurate results, we might want to consider more than two features,
like for example adding the humidity which would turn our 2d graph
into 3d.

And our line of best fit would be more like a plane of best fit. But if
we added a fourth feature, like whether it’s raining or not, suddenly
we can’t visualize this anymore. So as we consider more features,
we add more dimensions to the graph, the optimization problem
gets trickier, and fitting the training data is tougher.

This is where neural networks come in handy. Basically, by
connecting together many simple neurons with weights, a neural
network can learn to solve complicated problems, where the line of
best fit becomes a weird multi-dimensional function. Let’s give
John Green-bot an untrained neural network.

To stick with the same example, the input layer of this neural
network takes features like temperature, humidity, rain, and so on.

And the output layer predicts the number of swimmers that will
come to the pool. We’re not going to worry about designing the
architecture of John Green-bot’s neural network right now.

Let’s just focus on the weights. He’ll start, as always, by setting the
weights to random numbers, like the random line on the graph we
drew earlier. Only this time, it’s not just one random line.

Because we have lots of inputs, it’s lots of lines that are combined
to make one big, messy function. Overall, this neural network’s
function resembles some weird multi-dimensional shape that we
don’t really have a name for. To train this neural network, we’ll
start by giving John Green-bot a bunch of measurements from the
past 10 days at the swimming pool, because these are the days
where we also know the output attendance.

We’ll start with one day, where it was 80 degrees Fahrenheit, 65%
humidity, and not raining (which we’ll represent with 0). The
neurons will do their thing by multiplying those features by the
weights, adding the results together, and passing information to the
hidden layers until the output neuron has an answer. What do you
think, John Green-bot?

John Green-bot: 145 people were at the pool! Just like before, there
is a difference between the neural network’s output and the actual
swimming pool attendance -- which was recorded as 100 people.
Because we just have one output neuron, that difference of 45
people is the error.

Pretty simple. In some neural networks though, the output layer
may have a lot of neurons. So the difference between the predicted
answer and the correct answer is more than just one number.

In these cases, the error is represented by what’s known as a loss
function. Moving forward, we need to adjust the neural network’s
weights so that the next time we give John Green-bot similar inputs,
his math and final output will be more accurate. Basically, we need
John Green-bot to learn from his mistakes, a lot like when we
pushed a button to supervise his learning when he had the
perceptron program.

But this is trickier because of how complicated neural networks are.
To help neural networks learn, scientists and mathematicians came
up with an algorithm called backpropagation of the error, or just
backpropagation. The basic goal is to look at the loss function and
then assign blame to neurons back in the previous layers of the
network.

Some neurons’ calculations may have been more to blame for the
error than others, so their weights will be adjusted more. This
information is fed backwards, which is where the idea of
backpropagation comes from. So for example, the error from our
output neuron would go back a layer and adjust the weights that get
applied to our hidden layer neuron outputs.

And the error from our hidden layer neurons would go back a layer
and adjust the weights that get applied to our features. Remember:
our goal is to find the best combination of weights to get the lowest
error. To explain the logic behind optimization with a metaphor,
let’s send John Green Bot on a metaphorical journey through the
Thought Bubble.

Let’s imagine that weights in our neural network are like latitude
and longitude coordinates on a map. And the error of our neural
network is the altitude -- lower is better. John Green-bot the
explorer is on a quest to find the lowest point in the deepest valley.

The latitude and longitude of that lowest point -- where the error is
the smallest -- are the weights of the neural network’s global

 1 / 2

Training Neural Networks: Crash Course AI #4
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=lgKrup5oi_A
https://nerdfighteria.info/v/lgKrup5oi_A

optimal solution. But John Green-bot has no idea where this valley
actually is. By randomly setting the initial weights of our neural
network, we’re basically dumping him in the middle of the jungle.

All he knows is his current latitude, longitude, and altitude. Maybe
we got lucky and he’s on the side of the deepest valley. But he
could also be at the top of the highest mountain far away.

The only way to know is to explore! Because the jungle is so dense,
it’s hard to see very far. The best John Green-bot can do is look
around and make a guess.

He notices that he can descend down a little by moving northeast,
so he takes a step down and updates his latitude and longitude.
From this new position, he looks around and picks another step that
decreases his altitude a little more. And then another… and another.

With every brave step, he updates his coordinates and decreases
his altitude. Eventually, John Green-bot looks around and finds that
he can’t go down anymore. He celebrates, because it seems like
he found the lowest point in the deepest valley!

Or... so he thinks. If we look at the whole map, we can see that
John Green-bot only found the bottom of a small gorge when he ran
out of “down.” It’s way better than where he started, but it’s
definitely not the lowest point of the deepest valley. So he just found
a local optimal solution, where the weights make the error relatively
small, but not the smallest it could be.

Sorry, buddy. Thanks, Thought Bubble. Backpropagation and
learning always involves lots of little steps, and optimization is tricky
with any neural network.

If we go back to our example of optimization as exploring a
metaphorical map, we’re never quite sure if we’re headed in the
right direction or if we’ve reached the lowest valley with the
smallest error -- again that’s the global optimal solution. But tricks
have been discovered to help us better navigate. For example,
when we drop an explorer somewhere on the map, they could be
really far from the lowest valley, with a giant mountain range in the
way.

So it might be a good idea to try different random starting points to
be sure that the neural network isn’t getting stuck at a locally
optimal solution. Or instead of restarting over and over again, we
could have a team of explorers that start from different locations
and explore the jungle simultaneously. This strategy of exploring
different solutions at the same time on the same neural network is
especially useful when you have a giant computer with lots of
processors.

And we could even adjust the explorer’s step size, so that they can
step right over small hills as they try to find and descend into a
valley. This step size is called the learning rate, and it’s how much
the neuron weights get adjusted every time backpropagation
happens. We’re always looking for more creative ways to explore
solutions, try different combinations of weights, and minimize the
loss function as we train neural networks.

But even if we use a bunch of training data and backpropagation to
find the global optimal solution… we’re still only halfway done. The
other half of training an AI is checking whether the system can
answer new questions. It’s easy to solve a problem we’ve seen
before, like taking a test after studying the answer key.

We may get an A, but we didn’t actually learn much. To really test
what we’ve learned, we need to solve problems we haven’t seen
before. Same goes for neural networks.

This whole time, John Green-bot has been training his neural
network with swimming pool data. His neural network has dozens of
features like temperature, humidity, rain, day of the week, and wind
speed… but also grass length, number of butterflies around the pool,
and the average GPA of the lifeguards. More data can be better for
finding patterns and accuracy, as long as the computer can handle
it!

Over time, backpropagation will adjust the neuron weights, so that
neural network’s output matches the training data. Remember,
that’s called fitting to the training data, and with this complicated
neural network, we’re looking for a multi-dimensional function. And
sometimes, backpropagation is too good at making a neural
network fit to certain data.

See, there are lots of coincidental relationships in big datasets. Like
for example, the divorce rate in Maine may be correlated with U. S.
margarine consumption, or skiing revenue may be correlated with
the number of people dying by getting trapped in their bed sheets.

Neural networks are really good at finding these kinds of
relationships. And it can be a big problem, because if we give a
neural network some new data that doesn’t adhere to these silly
correlations, then it will probably make some strange errors. That’s
a danger known as overfitting.

The easiest way to prevent overfitting is to keep the neural network
simple. If we retrain John Green-bot’s swimming pool program
/without/ data like grass length and number of butterflies, and we
observe that our accuracy doesn’t change, then ignoring those
features is best. So training a neural network isn’t just a bunch of
math!

We need to consider how to best represent our various problems as
features in AI systems, and to think carefully about what mistakes
these programs might make. Next time, we’ll jump into our very first
lab of the course, where we’ll apply all this knowledge and build a
neural network together. Crash Course Ai is produced in
association with PBS Digital Studios.

If you want to help keep Crash Course free for everyone, forever,
you can join our community on Patreon. And if you want to learn
more about the math of k-means clustering, check out this video
from Crash Course Statistics.

Powered by TCPDF (www.tcpdf.org)

 2 / 2

http://www.tcpdf.org

