Crash Course: Artificial Intelligence

https://youtube.com/watch?v=kZWum5omEv4
https://nerdfighteria.info/v/kZWum5omEv4

Make an Al sound like a YouTuber (LAB): Crash Course Al #8

Flower, dog, anxious, senior, car, ltem, president, worried, avocado,
Zendaya, licorice, Nerdfighter, toothbrush, zany, expedient, This
isn’'t really a vlogbrothers video.

It's just a random string of words. There aren’t any coherent
sentences.

It looks like John Green bot could use some help speaking a bit
more like human John Green - sounds like an excellent task for
Natural Language Processing. INTRO Hey, I'm Jabril and welcome
to Crash Course Al! Today, we're going to tackle another hands-on
lab.

Our goal today is to get John-Green-bot to produce language that
sounds like human John Green... and have some fun while doing it.
We'll be writing all of our code using a language called Python in a
tool called Google Colaboratory, and as you watch this video, you
can follow along with the code in your browser from the link we put
in the description. In these Colaboratory files, there’s some regular
text explaining what we're trying to do, and pieces of code that you
can run by pushing the play button.

Now, these pieces of code build on each other, so keep in mind that
we have to run them in order from top to bottom, otherwise we
might get an error. To actually run the code and experiment with
changing it you'll have to either click “open in playground” at the

top of the page or open the File menu and click “Save a Copy to
Drive”. And just an fyi: you'll need a Google account for this.

Now, we’re going to build an Al model that plays a clever game of
fill-in-the-blank. We'll be able to give John-Green-bot any word
prompt like “good morning,” and he’ll be able to finish the
sentence. Like any Al, John-Green-bot won't really understand
anything, but Al generally does a really good job of finding and
copying patterns.

When we teach any Al system to understand and produce
language, we're really asking it to find and copy patterns in some
behavior. So to build a natural language processing Al, we need to
do four things: First, gather and clean the data. Second, set up the
model.

Third, train the model. And fourth, make predictions. So let’s start
with the first step: gather and clean the data.

In this case, the data are lots of examples of human John Green
talking, and thankfully, he’s talked a lot online., We need some way
to process his speech. And how can we do that? Subtitles.

And conveniently there’s a whole database of subtitle files on the
nerdfighteria wiki that | pulled from. | went ahead and collected a
bunch and put them into one big file that's hosted on crash course
ai's GitHub.. This first bit of code in 1.1 loads it.

So if you wanted to try to make your Al sound like someone else,
like Michael from Vsauce, or me, this is where you'd load all that
text instead. Data gathering is often the hardest and slowest part of
any machine learning project, but in this instance its pretty
straightforward. Regardless, we still aren’t done yet, now we need
to clean and prep our data for our model.

This is called pre-processing. Remember, a computer can only
process data as numbers, so we need to split our sentences into
words, and then convert our words into numbers. When we're
building a natural language processing program the term “word”
may not capture everything we need to know.

How many instances there are of a word can also be useful. So
instead, we'll use the terms lexical type and lexical token. Now a

lexical type is a word, and a lexical token is a specific instance of a
word, including any repeats.

So, for example, in the sentence: The goal of machine learning is to
make a learning machine. We have eleven lexical tokens but only
nine lexical types, because “learning” and “machine” both occur
twice. In natural language processing, tokenization is the process of
splitting a sentence into a list of lexical tokens.

In English, we put spaces between words, so let's start by slicing
up the sentence at the spaces. “Good morning Hank, it's
Tuesday.” would turn into a list like this. And we would have five
tokens. However there are a few problems.

Something tells me we don't really want a lexical type for Hank-
comma and Tuesday-period, so let's add some extra rules for
punctuation. Thankfully, there are pre-written libraries for this. Using
one of those, the list would look something like this.

In this case we would have eight tokens instead of five, and
tokenization even helped split up our contraction “it's” into “it” and
“apostrophe-s.” Looking back at our code, before tokenization, we
had over 30,000 lexical types. This code also splits our data into a
training dataset and a validation dataset. We want to make sure the
model learns from the training data, but we can test it on new data

it's never seen before.

That's what the validation dataset is for. We can count up our
lexical types and lexical tokens with this bit of code in box 1.3. And
it looks like we actually have about 23,000 unique lexical types.

But remember how many instances of a word can also be useful.
This code block here at step 1.4 allows us to separate how many
lexical types occur more than once twice and so on. It looks like
we've got a lot of rare words -- almost 10,000 words occur only
once!

Having rare words is really tricky for Al systems, because they're
trying to find and copy patterns, so they need lots of examples of
how to use each word. Oh Human John Green. Your master of
prose.

Let's see what weird words you use. Pisgah? What even is a
lilliputian?

Some of these are pretty tricky and are going to be too hard for
John-Green-bot’s Al to learn with just this dataset But others seem
doable if we take advantage of morphology. Morphology is the way
a word gets shape-shifted to match a tense, like you'd add an

“ED” to make something past tense, or when you shorten or
combine words to make them totes-amazeballs. Dear viewers, | did
not write that in the script.

In English, we can remove a lot of extra word endings, like ED, ING,
or LY, through a process called stemming. And so, with a few
simple rules, we can clean up our data even more. I'm also going

to simplify the data by replacing numbers with the hashtag or pound
signs.

Whatever you want to call it. This should take care of a lot of rare
words. Now we have 3,000 fewer lexical types and only about 8,000
words only occur once.

We really need multiple examples of each word for our Al to learn
patterns reliably, so we’ll simplify even more by replacing each of
those 8,000 or so rare lexical tokens with the word ‘unk’ or
unknown. Basically, we don’t want John-Green-bot to get
embarrassed if he sees a word he doesn’t know. So by hiding
some words, we can teach John-Green-bot how to keep writing

1/3

Crash Course: Artificial Intelligence

https://youtube.com/watch?v=kZWum5omEv4
https://nerdfighteria.info/v/kZWum5omEv4

Make an Al sound like a YouTuber (LAB): Crash Course Al #8

when he bumps into a one-time made-up words like Zombicorns.

And just to satisfy my curiosity... Yeah, John-Green-bot doesn’t
need words like “whippersnappers” or “zombification”. John
what'’s up with the fixation with zombies? Anyway, we'll be fine
without them.

Now that we finally have our data all cleaned and put together,
we’re done with pre-processing and can move on to Step 2: setting
up the model for John-Green-bot. There are a couple key things
that we need to do. First, we need to convert the sentences into
lists of numbers.

We want one word for every lexical type, so we'll build a dictionary
that assigns every word in our vocabulary a number. Second, unlike
us, the model can read a bunch of words at the same time, and we
want to take advantage of that to help John-Green-bot learn quickly.
So we're going to split our data into pieces called batches.

Here, we're telling the model to read 20 sequences (which have 35
words each) at the same time! Alright! Now, it’s time to finally build
our Al.

We’re going to program John-Green-bot with a simple language
model that takes in a few words and tries to complete the rest of the
sentence. So we’'ll need two key parts, an embedding matrix and a
recurrent neural network or RNN. Just like we discussed in the
Natural Language Processing video last week, this is an “Encoder-
Decoder” framework.

So let’s take it apart. An embedding matrix is a big list of vectors,
which is basically a big table of numbers, where each row
corresponds to a different word. These vector-rows capture how
related two words are.

So if two words are used in similar ways, then the numbers in their
vectors should be similar. But to start, we don’t know anything
about the words, so we just assign every word a vector with random
numbers. Remember we replaced all the words with numbers in our
training data, so now when the system reads in a number, it just
looks up that row in the table and uses the corresponding vector as
an input.

Part 1 is done: Words become indices, which become vectors, and
our embedding matrix is ready to use. Now, we need a model that
can use those vectors intelligently. This is where the RNN comes in.

We talked about the structure of a recurrent neural network in our
last video too, but it's basically a model that slowly builds a hidden
representation by incorporating one new word at a time. Depending
on the task, the RNN will combine new knowledge in different ways.
With John-Green-bot, we're training our RNN with sequences of
words from Vlogbrothers scripts.

Ultimately, our Al is trying to build a good summary to make sure a
sentence has some overall meaning, and it's keeping track of the
last word to produce a sentence that sounds like English. The
RNN'’s output after reading the final word so far in a sentence is
what we’ll use to predict the next word. And this is what we’ll use
to train John-Green-bot's Al after we build it.

All of this is wrapped up in code block 2.3 So Part 2 is done. We've
got our embedding matrix and our RNN. Now, we’re ready for Step
3: train our model.

Remember when we split the data into pieces called batches? And
remember earlier in Crash Course Al when we used
backpropagation to train neural networks? Well we can put those
pieces together, iterate over our dataset, and run backpropagation

on each example to train the model’s weights.

So in step 3.1 we're defining how to train our model and in step 3.2
we're defining how to evaluate our model and in step 3.3 we're
actually creating our model. Which means training and evaluating it.
Over the span of one epoch of training this model, the network will
loop over every batch of data -- reading it in, building
representations, predicting the next word, and then updating its
guesses.

This will train over 10 epochs, which might take a couple minutes.
We’re printing two numbers with each epoch, which are the

model’s training and validation perplexities. As the model learns, it
realizes there are fewer and fewer good choices for the next word.

The perplexity is a measure of how well the model has narrowed
down the choices. Okay, it looks like the model is done training and
has a perplexity of about 45 on train and 72 on validation, but it
started with perplexities in the hundreds! We can interpret perplexity
as the average number of guesses the model makes before it
predicts the right answer.

After seeing the data once, the model needed over 300 guesses for
the next word, but now it's narrowed it down to fewer than 50.
That's a pretty good improvement, even though it's far from

perfect. Time to see what the model can write, but to do that, we
need one final ingredient.

So far in Crash Course Al, we've talked a lot about the one best
label or the one best prediction an Al can make, but this doesn’t
always make sense to solve certain problems. If you wrote stories
by always having characters do the next obvious thing, they'd be
pretty boring. So Step 4 is inference, the part of Al where the
machine gets to make some choices, but we can still help it a little
bit.

Let’s think about what the final layer of the RNN is actually doing.
We talk about it like it's outputting a single label or prediction, but
actually the network is producing a bunch of scores or probabilities.
The most likely word has the highest probability, the next most likely
word has the second highest probability, and so on.

Because we get probabilities at every step, instead of taking the
best one each time to produce 1 sentence, we could sample 3
words and start 3 new sentences. Each of those 3 sentences could
then start 3 more new sentences... and then we have a branching
diagram of possibilities. Inference is so important because what the
model can produce and what we want aren’t necessarily the same
thing.

What we want is a really good sentence, but the model can only tell
us the score for one word at a time. Let’s look at this branching
diagram. Whenever we choose a word, we create a new branch,
and keep track of its score or probability.

If we multiply each score through to the end of the branch, we see
that the top branch, made the best scoring choice, but a worse
sentence overall. So we're going to implement a basic sampler in
our program. This will take a bunch of random paths, so we can sort
the results by the probability of the full sentences, and we can see
which sentences are best overall.

Also, when asking John-Green-bot to generate all these sentences,
we need to give him a word to start. I'm going to try “Good” for
now, but you can try other things by changing the code in 4.1.
Remember the pre-processing we did on our data?

That's why these sentences look a little off, with hashtags for
numbers, and the space before word endings that we introduced

2/3

Crash Course: Artificial Intelligence
https://youtube.com/watch?v=kZWum5omEv4
https://nerdfighteria.info/v/kZWum5omEv4

Make an Al sound like a YouTuber (LAB): Crash Course Al #8

when stemming. And look at the sentence you get from taking the
highest probability word each time. Good morning Hank, it's
Tuesday.

I’'m going to be like, I'm going to be like, I'm going to be like, I'm
going to see it isn’t as interesting as the ones where we mixed it up
a bit and took different branches. To be honest though... none of
these are great Vlogbrothers scripts. That's because of two
important things: First, there’s our data.

Remember, we didn’t have many examples of how to use each
word. In fact, we had to cut out a lot of “rare words” during training
because they only showed up once, so we couldn’t teach John-
Green-bot to recognize any patterns related to them. Lots of state-
of-the-art models address this by downloading data from Wikipedia,
large collections of books, or even Reddit when they train their
models.

We'll include some links in the description if you want to play with
some fancier models. But the second, bigger issue is that Al models
are missing the understanding we have as humans. Even if John
Green Bot split up words perfectly and predicted sentences that
sound like English, it's still John-Green-bot using tools like
tokenization, an embedding matrix, and a simple language model to
predict the next word.

When human John Green writes, he uses his understanding of the
world, like in Vlogbrothers videos, he considers Hank’s perspective
or whoever's watching. He’s not just trying to predict which next
word has the highest probability. Building models that interact with
people, and the world, is why natural language processing is so
exciting, but it's also why it'll take a lot more work to get John-
Green-bot to generate language as well as human John Green
does.

We've left a bunch of notes in the code for you to play if you want
to make your own Al. You can train for longer, change the sentence
prompt, or, if you're feeling adventurous, replace the text data to
speak in someone else’s voice. If you end up using this to make
something cool let us know in the comments.

Thanks for watching, see you next week. PBS Digital Studios wants
to hear from you. We do a survey every year that asks what you're
into, your favorite pbs shows, and things you would like to see more
from PBS Digital Studios.

You even get to vote on potential new shows. All of this helps us
make more stuff that you want to see. The survey takes about 10
minutes and you might win a sweet t-shirt.

Link is in the description. Thanks. Crash Course Al is produced in
association with PBS Digital Studios!

If you want to help keep all Crash Course free for everybody,
forever, you can join our community on Patreon. And if you want to
learn more about NLP check out this video from Crash Course
Computer Science.

3/3

http://www.tcpdf.org

