
Supervised Learning: Crash Course AI #2
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=4qVRBYAdLAo
https://nerdfighteria.info/v/4qVRBYAdLAo

Hey, I’m Jabril, and this is CrashCourse AI!

Today, we’re going to try to teach John Green-bot something. Hey
John Green-bot!

John Green-bot: “Hello humanoid friend!” Are you ready to learn?
John Green-bot: “Hello humanoid friend!” As you can see, he has a
lot of learning to do, which is the basic story of all artificial
intelligence. But it’s also our story.

Humans aren’t born with many skills, and we need to learn how to
sort mail, land airplanes, and have friendly conversations. So
computer scientists have tried to help computers learn like we do,
with a process called supervised learning. You ready, John Green-
bot?

John Green-bot: “Hello humanoid friend!” The process of learning
is how anything can make decisions, like for example humans,
animals, or AI systems. They can adapt their behavior based on
their experiences. In Crash Course AI, we’ll talk about three main
types of learning: Reinforcement Learning, Unsupervised Learning,
and Supervised Learning.

Reinforcement Learning is the process of learning in an
environment, through feedback from an AI’s behavior, it’s how kids
learn to walk! No one tells them how, they just practice, stumble,
and get better at balancing until they can put one foot in front of the
other. Unsupervised Learning is the process of learning without
training labels.

It could also be called clustering or grouping. Sites like YouTube
use unsupervised learning to find patterns in the frames of a video,
and compress those frames so that videos can be streamed to us
quickly. And Supervised Learning is the process of learning with
training labels.

It’s the most widely used kind of learning when it comes to AI, and
it’s what we’ll focus on today and in the next few videos!
Supervised learning is when someone who knows the right
answers, called a supervisor, points out mistakes during the
learning process. You can think of this like when a teacher corrects
a student’s math.

In one kind of supervised setting, we want an AI to consider some
data, like an image of an animal, and classify it with a label, like
“reptile” or “mammal.” AI needs computing power and data to
learn. And that’s especially true for supervised learning, which
needs a lot of training examples from a supervisor. After training
this hypothetical AI, it should be able to correctly classify images it
hasn’t seen before, like a picture of a kitten as a mammal.

That’s how we know it’s learning instead of just memorizing
answers. And supervised learning is a key part of lots of AI you
interact with every day! It’s how email accounts can correctly
classify a message from your boss as important, and ads as spam.

It’s how Facebook tells your face apart from your friend’s face so
that it can make tag suggestions when you upload a photo. And it’s
how your bank may decide whether your loan request is approved
or not. Now, to initially create this kind of AI, computer scientists
were loosely inspired by human brains.

They were mostly interested in cells called neurons, because our
brains have billions of them. Each neuron has three basic parts: the
cell body, the dendrites, and the axon. The axon of one neuron is
separated from the dendrites of another neuron by a small gap
called a synapse.

And neurons talk to each other by passing electric signals through

synapses. As one neuron receives signals from other neurons, the
electric energy inside of its cell body builds up until a threshold is
crossed. Then, an electric signal shoots down the axon, and is
passed to another neuron -- where everything repeats.

So the goal of early computer scientists wasn’t to mimic a whole
brain. Their goal was to create one artificial neuron that worked like
a real one. To see how, let’s go to the Thought Bubble.

In 1958, a psychologist named Frank Rosenblatt was inspired by
the Dartmouth Conference and was determined to create an
artificial neuron. His goal was to teach this AI to classify images as
“triangles” or “not-triangles” with his supervision. That’s what
makes it supervised learning!

The machine he built was about the size of a grand piano, and he
called it the Perceptron. Rosenblatt wired the Perceptron to a 400
pixel camera, which was hi-tech for the time, but is about a billion
times less powerful than the one on the back of your modern
cellphone. He would show the camera a picture of a triangle or a
not-triangle, like a circle.

Depending on if the camera saw ink or paper in each spot, each
pixel would send a different electric signal to the Perceptron. Then,
the Perceptron would add up all the signals that match the triangle
shape. If the total charge was above its threshold, it would send an
electric signal to turn on a light.

That was artificial neuron speak for “yes, that’s a triangle!” But if
the electric charge was too weak to hit the threshold, it wouldn’t do
anything and the light wouldn’t turn on, that meant “not a triangle.”
At first, the Perceptron was basically making random guesses. So
to train it with supervision, Rosenblatt used “yes” and “no” buttons.
If the Perceptron was correct, he would push the “yes” button and
nothing would change.

But if the Perceptron was wrong, he would push the “no” button,
which set off a chain of events that adjusted how much electricity
crossed the synapses, and adjusted the machine’s threshold
levels. So it’d be more likely to get the answer correct next time!
Thanks, Thought Bubble.

Nowadays, rather than building huge machines with switches and
lights, we can use modern computers to program AI to behave like
neurons. The basic concepts are pretty much the same: First, the
artificial neuron receives inputs multiplied by different weights,
which correspond to the strength of each signal. In our brains, the
electric signals between neurons are all the same size, but with
computers, they can vary.

The threshold is represented by a special weight called a bias,
which can be adjusted to raise or lower the neuron’s eagerness to
fire. So all the inputs are multiplied by their respective weights,
added together, and a mathematical function gets a result. In the
simplest AI systems, this function is called a step function, which
only outputs a 0 or a 1.

If the sum is less than the bias, then the neuron will output a 0,
which could indicate not-triangle or something else depending on
the task. But If the sum is greater than the bias, then the neuron will
output a 1, which indicates the opposite result! An AI can be trained
to make simple decisions about anything where you have enough
data and supervised labels: triangles, junk mail, languages, movie
genres, or even similar looking foods.

Like donuts and bagels. Hey John Green-bot! You want to learn
how to sort some disgusting bagels from delicious donuts?” John
Green-bot: “Hello humanoid friend!” John Green-bot still has the
talk-like-a-human program!

 1 / 3

Supervised Learning: Crash Course AI #2
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=4qVRBYAdLAo
https://nerdfighteria.info/v/4qVRBYAdLAo

Remember that we don’t have generalized AI yet… that program is
pretty limited. So I need to swap this out for a perceptron program.
Now that John Green-bot is ready to learn, we’ll measure the mass
and diameter of some bagels and donuts, and supervise him so he
gets better at labeling them.

How about you hold on to these for me? Right now, he doesn’t
know anything about bagels or donuts or what their masses and
diameters might be. So his program is initially using random
weights for mass, diameter, and the bias to help make a decision.

But as he learns, those weights will be updated! Now, we can use
different mathematical functions to account for how close or far an
AI is from the correct decision, but we’re going to keep it simple.
John Green-bot’s perceptron program is using a step function, so
it’s an either-or choice. 0 or 1.

Bagel or donut. Completely right or completely wrong. Let’s do it.

This here is a mixed batch of bagels and donuts. This first item has
a mass of 34 grams and a diameter of 7.8 centimeters. The
perceptron takes these inputs (mass and diameter), multiplies them
by their respective weights, then adds them together.

If the sum is greater than the bias -- which, remember, is the
threshold for the neuron firing -- John Green-bot will say “bagel.”
So if it helps to think of it this way, the bias is like a bagel threshold.
If the sum is less than the bias, it hasn’t crossed the bagel
threshold, and John Green-bot will say “donut.” All this math can
be tricky to picture. So to visualize what’s going on, we can think of
John Green-bot’s perceptron program as a graph, with mass on
one axis and diameter on the other.

The weights and bias are used to calculate a line called a decision
boundary on the graph, which separates bagels from donuts. And if
we represent this same item as a data point, we’d graph it at 34
grams and 7.8 centimeters. This data point is above the decision
boundary, in the bagel zone!

So all this means is that when I ask John Green-bot what this food
is… he’ll say: John Green-bot: “Bagel!” And... he got it wrong,
because this is a donut. No big deal! With a brand new program,
he’s like a baby that made a random guess!

Because he’s using random weights right now. But we can help
him learn by updating-- his weights. So we take an old weight and
add a number calculated by an equation called the update rule.

We’re going to keep this conceptual, but if you want more
information about this equation, we’ve linked to a resource in the
description. Now because our perceptron can only be completely
right or completely wrong, the update rule ends up being pretty
simple. If John Green-bot made the right choice, like labeling a
donut as a donut, the update rule works out to be 0.

So he adds 0 to the weight, and the weight stays the same. But if
John Green-bot made the wrong choice, like labeling a donut as a
bagel, the update rule will have a value -- a small positive or
negative number. He’ll add that value to the weight, and the weight
will change.

Conceptually, this means John Green-bot learns from failure but not
from success. So he called this donut a bagel, and got the label
wrong. By pressing this “no” button, I’m supervising his learning
and letting him know he made the wrong choice.

So his weights update. If we look back at the graph, we can see
that when the weights update, the decision boundary changes. The
data point we added is now below the line, in the donut zone.

Now, his perceptron will classify another item with this mass and
diameter as a donut! This next item [donut] has a mass of 26 grams
and a diameter of 6.1 centimeters. What do you think, John Green-
bot?

John Green-bot: “Donut!” He got it right! When he took those inputs
and did that same calculation, the sum was less than the bias. That
data point appeared below the decision boundary -- in the donut
zone.

And so I’m going to push the “yes” button. In this case, the update
rule equation works out to 0, so the weights stay the same, and so
does the decision boundary. Now we’ll do this 48 more times to
train his perceptron.

After we’re done training John Green-bot’s perceptron, we have to
test it on new data to see how well he learned. So I’ve got 100 new
bagels and donuts for him to classify. Woah.

This is a big what? What is this? John Green

Bot: "Bagel." Alright, alright. I'm just going to write down your
answer.

Alright so overall, he classified 25 donuts and 75 bagels. We can
visualize the results on the graph with the decision boundary like
this. But we can also put the results in a table, called a confusion
matrix, because it tells us where John Green-bot was confused. He
got 8 donuts correct and 73 bagels correct. But he said that a bagel
was a donut twice, and that a donut was a bagel 17 times. Using
these numbers, we can calculate his overall accuracy by adding
together what he got right, which were 8 donuts and 73 bagels, and
dividing by the total 100, to get 81%.

But to really understand what’s wrong, we need to look at his
precision and his recall. We can calculate these percentages for
both foods, but we’ll focus on donuts right now. Precision tells you
how much you should trust your program when it says it's found
something. If John Green-bot tells me something’s a donut, I’m
expecting to eat a donut. I don’t want to bite into a bagel, because
that would be a gross surprise. Of the 10 items that he said were
donuts, 8 were actually donuts. So he was 80% precise, and I can
be 80% sure he’s only handing me donuts when he says he is.
Recall tells you how much your program can find of the thing you're
looking for. I’m really hungry, so I want as many donuts as
possible. But of the 25 items that were donuts, he correctly labeled
8 of them. So his recall was just 32%, and he just handed me 32%
of all the donuts.

The precision and recall depend on the criteria John Green-bot is
using to make a decision: diameter and mass. And as we can see
from this graph, he thinks that donuts generally have smaller
diameters and masses than bagels -- they’re small, fluffy treats. So
when it comes to classifying donuts, he has high precision.
Because if he says something’s a donut, we’re pretty sure it’s a
donut, not a disgusting bagel. But John Green-bot has low recall,
because this criteria didn’t account for the fact that some donuts
can be way bigger than the donuts we used to train his perceptron.
They have a bigger diameter and mass, and they fall in the current
“bagel zone,” so he missed a lot of donuts when he was
classifying. Thanks John Green Bot.

Figuring out what criteria to use is the key to most AI challenges. If
we wanted better accuracy for this donut-bagel problem, maybe we
should have used inputs besides mass and diameter, like checking
for seeds or sprinkles. Generally, more inputs are better for
accuracy, but the AI will need more processing power and time to
make decisions.

 2 / 3

Supervised Learning: Crash Course AI #2
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=4qVRBYAdLAo
https://nerdfighteria.info/v/4qVRBYAdLAo

An ideal AI system would be small, powerful, and have perfect
precision and perfect recall. But in the real world, mistakes happen,
so we have to prioritize based on our goals. The AI filtering our
inboxes needs to make sure we get all the important emails, so it
needs high recall. But it’s okay if it isn’t very precise, because we
can deal with some spam getting through and don’t need only good
emails.

Most AIs handle more complicated problems than sorting
something into one of two categories, though. The world isn’t all
donuts and bagels. So to answer more complicated questions, we
need more complicated AI.

Next time, we’ll combine artificial neurons to create an artificial
neural network. See you then!

Crash Course is produced in association with PBS Digital Studios. If
you want to help keep all Crash Course free for everybody, forever,
you can join our community on Patreon. And if you want to learn
more about how the human brain and nervous system works, check
out our Anatomy & Physiology videos about them.

Powered by TCPDF (www.tcpdf.org)

 3 / 3

http://www.tcpdf.org

