
Neural Networks and Deep Learning: Crash Course AI #3
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=oV3ZY6tJiA0
https://nerdfighteria.info/v/oV3ZY6tJiA0

Hi, I’m Jabril, and welcome to CrashCourse AI!

In the supervised learning episode, we taught John Green-bot to
learn using a perceptron, a program that imitates one neuron. But
our brains make decisions with 100 billion neurons, which have
trillions of connections between them!

We can actually do a lot more with AI if we connect a bunch of
perceptrons together, to create what’s called an artificial neural
network. Neural networks are better than other methods for certain
tasks like, image recognition. The secret to their success is their
hidden layers, and they’re mathematically very elegant.

Both of these reasons are why neural networks are one of the most
dominant machine learning technologies used today. [INTRO] Not
that long ago, a big challenge in AI was real-world image
recognition, like recognizing a dog from a cat, and a car from a
plane from a boat. Even though we do it every day, it’s really hard
for computers. That’s because computers are good at literal
comparisons, like matching 0s and 1s, one at a time.

It’s easy for a computer to tell that these images are the same by
matching the pixels. But before AI, a computer couldn’t tell that
these images are of the same dog, and had no hope of telling that
all of these different images are dogs. So, a professor named Fei-
Fei Li and a group of other machine learning and computer vision
researchers wanted to help the research community develop AI that
could recognize images.

The first step was to create a huge public dataset of labeled real-
world photos. That way, computer scientists around the world could
come up with and test different algorithms. They called this dataset
ImageNet.

It has 3.2 million labeled images, sorted into 5,247 nested
categories of nouns. Like for example, the “dog” label is nested
under “domestic animal,” which is nested under “animal.” Humans
are the best at reliably labeling data. But if one person did all this
labeling, taking 10 seconds per label, without any sleep or snack
breaks, it would take them over a year!

So ImageNet used crowd-sourcing and leveraged the power of the
Internet to cheaply spread the work between thousands of people.
Once the data was in place, the researchers started an annual
competition in 2010 to get people to contribute their best solutions
to image recognition. Enter Alex Krizhevsky, who was a graduate
student at the University of Toronto.

In 2012, he decided to apply a neural network to ImageNet, even
though similar solutions hadn’t been successful in the past. His
neural network, called AlexNet, had a couple of innovations that set
it apart. He used a lot of hidden layers, which we’ll get to in a
minute.

He also used faster computation hardware to handle all the math
that neural networks do. AlexNet outperformed the next best
approaches by over 10%. It only got 3 out of every 20 images
wrong.

In grade terms, it was getting a solid B while other techniques were
scraping by with a low C. Since 2012, neural network solutions
have taken over the annual competition, and the results keep
getting better and better. Plus, AlexNet sparked an explosion of
research into neural networks, which we started to apply to lots of
things beyond image recognition.

To understand how neural networks can be used for these
classification problems, we have to understand their architecture
first. All neural networks are made up of an input layer, an output

layer, and any number of hidden layers in between. There are many
different arrangements but we’ll use the classic multi-layer
perceptron as an example.

The input layer is where the neural network receives data
represented as numbers. Each input neuron represents a single
feature, which is some characteristic of the data. Features are
straightforward if you’re talking about something that’s already a
number, like grams of sugar in a donut.

But, really, just about anything can be converted to a number.
Sounds can be represented as the amplitudes of the sound wave.
So each feature would have a number that represents the
amplitude at a moment in time.

Words in a paragraph can be represented by how many times each
word appears. So each feature would have the frequency of one
word. Or, if we’re trying to label an image of a dog, each feature
would represent information about a pixel.

So for a grayscale image, each feature would have a number
representing how bright a pixel is. But for a color image, we can
represent each pixel with three numbers: the amount of red, green,
and blue, which can be combined to make any color on your
computer screen. Once the features have data, each one sends its
number to every neuron in the next layer, called the hidden layer.

Then, each hidden layer neuron mathematically combines all the
numbers it gets. The goal is to measure whether the input data has
certain components. For an image recognition problem, these
components may be a certain color in the center, a curve near the
top, or even whether the image contains eyes, ears, or fur.

Instead of answering yes or no, like the simple Perceptron from the
previous episode, each neuron in the hidden layer does some
slightly more complicated math and outputs a number. And then,
each neuron sends its number to every neuron in the next layer,
which could be another hidden layer or the output layer. The output
layer is where the final hidden layer outputs are mathematically
combined to answer the problem.

So, let’s say we’re just trying to label an image as a dog. We might
have a single output neuron representing a single answer - that the
image is of a dog or not. But if there are many answers, like for
example if we’re labeling a bunch of images, we’ll need a lot of
output neurons.

Each output neuron will correspond to the probability for each label
-- like for example, dog, car, spaghetti, and more. And then we can
pick the answer with the highest probability. The key to neural
networks -- and really all of AI -- is math.

And I get it. A neural network kind of seems like a black box that
does math and spits out an answer. I mean, those middle layers are
even called hidden layers!

But we can understand the gist of what’s happening by working
through an example. Oh John Green Bot? Let’s give John Green-
bot a program with a neural network that’s been trained to
recognize a dog in a grayscale photo.

When we show him this photo first, every feature will contain a
number between 0 and 1 corresponding to the brightness of one
pixel. And it’ll pass this information to the hidden layer. Now, let’s
focus on one hidden layer neuron.

Since the neural network is already trained, this neuron has a
mathematical formula to look for a particular component in the
image, like a specific curve in the center. The curve at the top of the

 1 / 2

Neural Networks and Deep Learning: Crash Course AI #3
Crash Course: Artificial Intelligence
https://youtube.com/watch?v=oV3ZY6tJiA0
https://nerdfighteria.info/v/oV3ZY6tJiA0

nose. If this neuron is focused on this specific shape and spot, it
may not really care what’s happening everywhere else.

So it would multiply or weigh the pixel values from most of those
features by 0 or close to 0. Because it’s looking for bright pixels
here, it would multiply these pixel values by a positive weight. But
this curve is also defined by a darker part below.

So the neuron would multiply these pixel values by a negative
weight. This hidden neuron will add all the weighted pixel values
from the input neurons and squish the result so that it’s between 0
and 1. The final number basically represents the guess of this
neuron thinking that a specific curve, aka a dog nose, appeared in
the image.

Other hidden neurons are looking for other components, like for
example, a different curve in another part of the image , or a fuzzy
texture. When all of these neurons pass their estimates onto the
next hidden layer, those neurons may be trained to look for more
complex components. Like, one hidden neuron may check whether
there’s a shape that might be a dog nose.

It probably doesn’t care about data from previous layers that
looked for furry textures, so it weights those by 0 or close to 0. But it
may really care about neurons that looked for the “top of the nose”
and “bottom of the nose” and “nostrils”. It weights those by large
positive numbers.

Again, it would add up all the weighted values from the previous
layer neurons, squish the value to be between 0 and 1, and pass
this to the next layer. That’s the gist of the math, but we’re
simplifying a bit. It’s important to know that neural networks don’t
actually understand ideas like “nose” or “eyelid.” Each neuron is
doing a calculation on the data it’s given and just flagging specific
patterns of light and dark.

After a few more hidden layers, we reach the output layer with one
neuron! So after one more weighted addition of the previous layer’s
data, which happens in the output neuron, the network should have
a good estimate if this image is a dog. Which means, John Green-
bot should have a decision.

John Green-bot: Output neuron value: 0.93. Probability that this is a
dog: 93%! Hey John Green Bot nice job!

Thinking about how a neural network would process just one image
makes it clearer why AI needs fast computers. Like I mentioned
before, each pixel in a color image will be represented by 3
numbers --- how much red, green, and blue it has. So to process a
1000 by 1000 pixel image, which in comparison is a small 3 by 3
inch photo, a neural network needs to look at 3 million features!

AlexNet needed more than 60 million neurons to achieve this, which
is a ton of math and could take a lot of time to compute. Which is
something we should keep in mind when designing neural networks
to solve problems. People are really excited about using deeper
neural networks, which are networks with more hidden layers, to do
deep learning.

Deep networks can combine input data in more complex ways to
look for more complex components, and solve trickier problems. But
we can’t make all networks like a billion layers deep, because more
hidden layers means more math which again would mean that we
need faster computers. Plus, as a network get deeper, it gets
harder for us to make sense of why it’s giving the answers it does.

Each neuron in the first hidden layer is looking for some specific
component of the input data. But in deeper layers, those
components get more abstract from how humans would describe

the same data. Now, this may not seem like a big deal, but if a
neural network was used to deny our loan request for example,
we’d want to know why.

Which features made the difference? How were they weighed
towards the final answer? In many countries, we have the legal right
to understand why these kinds of decisions were made.

And neural networks are being used to make more and more
decisions about our lives. Most banks for example use neural
networks to detect and prevent fraud. Many cancer tests, like the
Pap test for cervical cancer, use a neural network to look at an
image of cells under a microscope, and decide whether there’s a
risk of cancer.

And neural networks are how Alexa understands what song you’re
asking her to play and how Facebook suggests tags for our photos.
Understanding how all this happens is really important to being a
human in the world right now, whether or not you want to build your
own neural network. So this was a lot of big-picture stuff, but the
program we gave John Green-bot had already been trained to
recognize dogs.

The neurons already had algorithms that weighted inputs. Next
time, we’ll talk about the learning process used by neural networks
to get to the right weights for every neuron, and why they need so
much data to work well. Crash Course Ai is produced in association
with PBS Digital Studios.

If you want to help keep all Crash Course free for everyone, forever,
you can join our community on Patreon. And if you want to learn
more about the math behind neural networks, check out this video
from Crash Course Statistics about them.

Powered by TCPDF (www.tcpdf.org)

 2 / 2

http://www.tcpdf.org

