Crash Course: Artificial Intelligence

How to make an Al read your handwriting (LAB) : Crash Course Ai #5

https:/lyoutube.com/watch?v=6nGCGYWMObE
https://nerdfighteria.info/v/6nGCGYWMObE

Jabril: Oh, this is it. Perfect. | think these extra layers are gonna

make it so much better. Oh yeah, increasing the size of this layer
was a really good idea. Alright, okay, | can't wait any longer. It's

time to test it.

John Green-bot: Jabril, Jabril, | wrote a novel.
J: Whoa, John Green-bot, you did what?
JGB: | wrote a novel.

J: Anovel? Oh. Let me see this. Wow, John Green-bot, this is
pretty sloppy. We need to work on your handwriting. Hold up, hold
up, you wrote one letter per page? This is impossible to read. John
Green-bot, we've got to get your novel an audience, so let's digitize
this using machine learning, but first, there's something else we
have to test.

(Intro)

Welcome back to Crash Course Al. I'm your host, Jabril, and today
we'll be doing something a little different. This is the first time we're
trying a hands-on lab on Crash Course, so we'll tackle a project
together and program a neural network to recognize handwritten
letters. Alright, John Green-bot, we'll get back to you when we've
got something.

We'll be writing all of our code using a language called Python and
a tool called Google Collaboratory. You can see the code we're
about to go over in your browser from the link we put in the
description, and you can follow along with me in this video. In these
Collaboratory files, there's some regular text explaining what we're
trying to do, and pieces of code that we can run by pushing the play
button. These pieces of code build on each other, so keep in mind
that we have to run them in order from top to bottom. Otherwise,
we might get an error. To actually run the code and experiment
with changing it, you have to either click open in playground at the
top of the page, or open the file menu and click save a copy to
drive, and just FYI, you'll need a Google account for this.

Remember: our goal is to program a neural network to recognize
handwritten letters and convert them to typed text. Even though
this stack of papers is unreadable to me, we can work with it, and it
could actually make our project a little easier. Usually with a project
like this, we'd have to write code to figure out where one letter ends
and another begins, because handwriting can be messy and
uneven. That's called the segmentation problem.

But because John Green-bot wrote his novel like this, the letters are
already segmented and we can just focus on recognizing the letter
on each page. By the way, avoiding the segmentation problem is
also why official forms sometimes have little boxes for each letter
instead of just a line for writing your name. Even though we don't
have to worry about segmentation, recognizing handwritten letters
and converting them to typed text is still tricky. Every handwritten 'J'
looks a little different, so we need to program our neural network to
recognize a pattern instead of memorizing a specific shape, but
before we do this, let's think about what we need to get there.

Neural networks need a lot of labeled data to learn what each letter
generally looks like, so step one is find or create a labeled dataset
to train our neural network, and this involves splitting our dataset
into the training set and the testing set. The training set is used to
train the neural network, and the testing set has data that's kept
hidden from the neural network during training, so it can be used to

check the network's accuracy.

Next is step two: create a neural network. We'll actually need to
configure an Al with an input layer, some number of hidden layers,
and the ability to output a number corresonding to its letter
prediction. In step three, we'll train, test, and tweak our code until
we feel that it's accurate enough, and finally, in step four, we'll scan
John Green-bot's handwritten pages and use our newly trained
neural network to convert them into typed text.

Alright, let's get started. Step 1: creating a labeled dataset can be a
huge and expensive challenge, especially if | have to handwrite and
label thousands of images of letters by myself. Luckily, there's
already a dataset that we can use: the Extended Modified National
Institute of Standards and Technology dataset, or EMNIST for
short. This dataset has tens of thousands of labeled images of
handwritten letters and numbers, generated from US census forms.
Some of the handwriting is relatively neat and some, not so much.
We're gonna use the EMNIST letters chunk of the dataset, which
has 145,600 images of letters, because we're only recognizing
letters in John Green-bot's book, not numbers.

This code here will give our program access to this dataset, also
called importing it. So now, we need to make sure to keep our
training and testing datasets separate, so that when we test for
accuracy, our Al has never seen the testing images before. So now
in our code at step 1.2, let's call the first 60,000 labeled images
‘train' and the next 10,000 labeled images 'test'. These images of
letters are 28x28 pixels, and each pixel is a greyscale value
between 0 and 255. To normalize each pixel value and make them
easier for the neural network to process, we'll divide each value by
255. That will give us a number between 0 and 1 for each pixel in
each image.

Performing a transformation like this to make the data easier to
process is a machine learning method called preprocessing. By the
way, we'll need different preprocessing steps for different types of
data. Alright, it may take a few seconds to download and process
all the images, so while that's happening, | want to clarify that
EMNIS is a luxury. There aren't many already-existing datasets
where you have this much labeled data to use. In general, if we try
and solve other problems, we have to think hard about how to
collect and label data for training and testing our networks.

Data collection is a very important step to training a good neural
network. In this case, though, we've got plenty to use in both sets.

Okay, let's write a little piece of code to make sure that we imported
our dataset correctly. This line lets us display an image and will
also display the label using the print command. See, this letter is
labeled as a 'Y'. We can display a different example by changing
this index number, which tells our program which letter image in the
EMNIS dataset to pull. Let's look at the image index at 1200. This
is labeled as a 'W'. These are already labeled images. There's no
neural network making any decisions yet, but this is a labeled
dataset, so we're done with the first step.

Step two, now that we have our dataset, we need to actually build a
neural network, but we don't need to reinvent the wheel here.
We're going to stick to a multi-layer perceptron neural network, or
MLP for sure, which is the kind we focused on in the neural
networks and deep learning episodes. There are already some
tools in Python called Libraries that we can use to make the
network. We're going to use a library called SKLearn which is short
for SciKit Learn. We'll import that so we have access to it.

1/3



Crash Course: Artificial Intelligence

How to make an Al read your handwriting (LAB) : Crash Course Ai #5

https:/lyoutube.com/watch?v=6nGCGYWMObE
https://nerdfighteria.info/v/6nGCGYWMObE

SKLearn includes a bunch of different machine learning algorithms
and we'll be using its multilayer perceptron algorithm in this lab.

So, our neural network is gonna have images of handwritten letters
as inputs. Each image from the EMNIS is 28x28 pixels and each of
these pixels will be represented by a single input neuron. So, we'll
have 784 input neurons in total. Depending on how dark a
particular pixel is, it will have a greyscale value between 0 and 1,
thanks to the processing we did earlier. The size of our output layer
depends on the number of label types that we want our neural
network to guess. Since we're trying to guess letters and there are
26 letters in the English alphabet, we'll have 26 output neurons. We
don't actually have to tell a network this, though. It will figure this
out on its own from the labels in the training set.

For the structure of the hidden layers, we'll just start experimenting
to see what works. We can always change it later. So we'll try a
single hidden layer containing 50 neurons. Over the span of one
epoch of training this neural network, each of the 60,000 images in
the training dataset will be processed by the input neurons. The
hidden layer neurons will randomly pick some aspect of each image
to focus on, and the output neurons will hold the best guess as to
whether each image is a particular letter.

You'll see that the code in our Collab notebook calls this an
iteration. In the specific algorithm we're using, an iteration and an
epoch are the same thing.

After each of the 60,000 images are processed, the network will
compare its guess to the actual label and update weights and
biases to give a better guess for the next image, and after multiple
epochs of the same training dataset, the neural network's prediction
should keep getting better, thanks to those updated weights and
biases. We'll just go with 20 epochs for now.

We've captured all that in a single line of code in step 2.1, which
creates a neural network with a single hidden layer with 50 neurons
that will be trained over 20 epochs. This is why libraries can be so
useful. We're accessing decades of research with just one line of
code, but keep in mind, there are cons to using libraries like this as
well. We don't have a lot of control over what's happening under
the hood here. When solving most problems, we'll want to do a mix
of using the existing libraries and writing our own Al algorithms.

So, we would need a lot more than just one line of code. For this
lab, though, step 2 is done.

Step 3. Next, we want to actually train our network over those 20
epochs and see how well it guesses the letters in the training and
testing datasets, with this one line of code in step 3.1. For every
epoch, our program prints a number called the error of the loss
function. This basically represents how wrong the network was
overall.

We want to see this number going down with each epoch. The
number that we really care about is how well the network does on
the testing dataset, which shows how good our network is at
dealing with data its never seen before, and we have 84% correct.
Now, that's not bad, considering we only trained for 20 epochs, but
we still want to improve it. To see where the network made most of
its mistakes, we can create a confusion matrix, which we made in
step 3.2.

The color of each cell in the confusion matrix represents the
number of elements in that cell, and a brighter color means more

elements. The rows are the correct values, and the columns are
the predicted values and the numbers on the axes represent the 26
letters in the alphabet, so 0 is A and 1 is B, etc, etc. So cell (0,0)
represents the number of times that our network correctly predicted
that an Ais an A. It's good to see a bright diagonal line, because
those are all the correct values, but other bright cells are
mislabeled, so we should check if there are any patterns. For
example, | and L may be easy to confuse, so let's look at some
cases where that happened.

We can also try other types of errors, like every time our network
guesses thata U is a V, 37 times. To see if we can improve our
accuracy, we can program a slightly different neural network. More
epochs, more hidden layers, and more neurons in the hidden layers
could all help, but the tradeoff is that things will be a bit slower. We
can play around with the structure here to see what happens. For
now, let's try creating a neural network that has five hidden layers of
100 neurons each and we'll train it over 50 epochs. It'll take a few
minutes to run.

Now we've got better accuracy rates on our testing dataset. We got
88% correct instead of 84%, and that's an improvement. Over time,
we can develop an intuition about how to construct neural networks
to achieve better results.

See if you can create a network that has a higher accuracy than
ours on the testing dataset, but for now, we're gonna forward with
this trained network. Step 4. This final step is our moment of truth.
We're gonna use our trained neural network to try and read John
Green-bot's novel. So let's dig into this stack of papers. First, we
gotta get our data in the right format by scanning all of these
papers.

And done. And because we're using Google Collab, we need to get
them online. We're storing them in a GitHub repository, which we
coded to import into our Collaboratory notebook, but as you can
see, those scanned images are huge, so we've also done a bit of
processing on them to avoid having to download and compute over
so much data. We've changed the size of every image to 128x128
pixels. The other thing you may notice is that the EMNIST dataset
uses a dark background with light strokes, but our original scans
have a white background with dark strokes, so we also went ahead
and inverted the colors to be consistent with EMNIST.

Alright. So now, back to the Collab notebook. So this code right
here in step 4.1 will pull the modified letters from GitHub. Now it'll
read them into an array and display one of them, just to make sure
we're able to import them correctly. This looks pretty good. Clearer
than the EMNIST data, actually, but back to the point of why we're
doing this in the first place. Let's see if we can process John Green-
bot's story now.

Uhh, this is not making any sense, so we're doing something
wrong. First off, John Green-bot's story had some empty spaces
between words. We never actually trained our model on empty
spaces, just the 26 letters, so it wouldn't be able to detect these, but
blank pages should be easy to detect.

After all, unlike handwritten letters, all blank images should be
exactly the same. So, we'll just check each image and see if it's a
blank space and if it is, we'll add a space to our story. This looks
better. There are separate words and | can tell that the first word is
‘the’, but not much beyond that. Something else isn't going right
here. Well, even though the letters on the pages that were scanned
look clear to our human eyes, the images were really big compared

2/3



Crash Course: Artificial Intelligence
https:/lyoutube.com/watch?v=6nGCGYWMObE
https://nerdfighteria.info/v/6nGCGYWMObE

How to make an Al read your handwriting (LAB) : Crash Course Ai #5

to the handwritten samples that were used to train EMNIST. We re-
sized them, but that doesn't seem to be enough.

To help our neural network digitize these letters, we should try
processing these images in the same way that EMNIST did. Let's
do a little detective work to figure out how the EMNIST dataset was
processed, so our images are more similar to the training dataset
and our program's accuracy will hopefully get better. Hmm. Further
information on the dataset contents and conversion process can be
found in the paper.

We're not gonna go through the paper, but link it in the description if
you wanna learn more. Basically, | made the following additions to
the code. We're applying some filters to the image to soften the
letter edges, centering each letter in the square image, and re-
sizing each one to be 28x28 pixels. As part of this code, we're also
displaying one letter from these extra processed images to do
another check.

Even though to my eyes, the letters look less clear now, they do
look much more similar to the letters in the EMNIST dataset, which
is good for a neural network. The edges of the letters are kind of
fuzzy and they're centered in the square. So let's try processing
this story one more time. Keep in mind, though, that with an 88%
accurate model, we expect to get about 1 in 15 letters wrong in the
story.

John Green-bot, are you ready? Alright, let's see what you're
talking about.

The Fault in Our Power Supplies. | fell in love the way your battery
dies, slowly and then all at once.

Quite poetic, John Green-bot. Okay, it's not perfect, but it was
pretty easy to figure out with context and by knowing which letters
might be mistaken for each other. Regardless, thanks, John Green-
bot, for giving us a little taste of your first novel, and thank you for
following along in our first Crash Course Lab. Let us know in the
comments how you think you could improve the code and tell us if
you use it in any of your own projects.

Now, this kind of supervised machine learning is a big component
of the Al revolution, but it's not the only one. In later videos, we'll be
looking at other types of machine learning including unsupervised
and reinforcement learning, to see what we can do even without a
giant labeled dataset. See you then.

Crash Course Al is produced in association with PBS Digital
Studios. If you want to help keep Crash Course free for everyone
forever, you can join our community on Patreon, and if you want to
learn more about the basics of programming in any language,
check out this video from Crash Course Computer Science.

(PBS Digital Logo)

3/3


http://www.tcpdf.org

