Crash Course: Artificial Intelligence

https://nerdfighteria.info/v/ial W3CO4rcY

https:/lyoutube.com/watch?v=ialW3CO4rcY

Let's make a movie recommendation system: Crash Course Al #16

Jabril: Yeah, that was... John Green
Bot: ... the BEST movie ever!

Jabril: That's not what | was gonna say. How about for the next
movie night we pick a new movie that we’ll both probably like?
John-Green-

Bot: Maybe something romantic? How about Pride & Prejudice?

Jabril: Oh John Green Bot... I'm going to need this. Okay, | think it's
time to make a movie recommender system Al. It's the only hope
for the future of John Green Bot and my friendship... or at least our
movie nights!

INTRO Hey, I'm Jabril, and welcome to Crash Course Al. Last
time, we introduced the idea of recommender systems, which are
Als that use information about something, and its social ratings to
recommend new things to people. These things can be ads,
products, YouTube videos, or pretty much anything like that.

Today, I'm going to build a recommender system for movies to
hopefully find a new movie that both me and John-Green-bot want
to watch for our next movie night. Like in previous labs, I'll be
writing all of the code using a language called Python in a tool
called Google Colaboratory. And as you watch this video, you can
follow along with the code in your browser from the link we put in
the description.

In these Colaboratory files, there’s some regular text explaining
what we're trying to do, and pieces of code that you can run by
pushing the play button. These pieces of code build on each other,
so keep in mind that you have to run them in order from top to
bottom, otherwise you might get an error. To actually run the code
or make changes to it, you'll have to either click “open in
playground” at the top of the page or open the File menu and click
“Save a Copy to Drive”.

And just an fyi: you'll need a Google account for this. So, if I'm
going to build a movie-recommending Al, the first thing | know is
that Al systems need data. I'll need to find and import a dataset of
movies, and ideally it'll already have ratings given by lots of
different people to lots of different movies, so | won't have to go
through and rank every single movie by myself.

That would take a while. Second, I'll need to do some basic
analysis. Let’s start by finding some generic recommendations, like
the top-rated movies in both John-Green-bot’s and my favorite
genres.

Maybe we'll get lucky and find a movie we both want to watch and
haven't seen yet on those lists. But... | don't really have hope for
that because we like such different movies. So, third, John-Green-
bot and | will need to personalize this dataset by providing some of
our own movie ratings.

Fourth, I'll use a technigue known as user-user collaborative

filtering to generate a set of recommendations for both me and John-
Green-bot. Hopefully there will be SOME overlap on those
recommendation lists. Alright, let's get started.

The first step is getting data. And just like other labs, I'm not going
to start from scratch. This time, I'm using an existing dataset
published by MovieLens, which has about 100,000 user ratings for
about 10,000 different movies.

MovielLens has bigger datasets available, going up to tens of
millions of ratings, but this smaller set should be enough to plan
movie nights for John-Green-bot and me. I'm also going to use a

library known as LensKit, which comes built-in with some nice tools
for building recommender systems. So now, I've got data, but let's
make sure | understand what data are even there.

This code lets me see the first 10 rows of the ratings dataset.
There's one important thing that | notice about this dataset right
away: how it handles missing data. Like, for example, here | can
see that user #1 gave a rating of 4.0 to item #1, and that they
provided a rating of 4.0 to item #3.

But | don't see a rating for item #2 at all. Most people don’t watch
most movies, so that makes sense that there would be missing
data. And storing a bunch of zeros would take a lot of space, so it's
good to know that MovieLens decided to avoid zeros in this dataset
by not storing unranked items at all.

But the way it stores movie data isn’t super useful for this current
problem, because | want to know what these movies are! Not just
ID numbers like “item #2.” John-Green-bot and | can’t exactly
search for “item #2” when we're trying to rent a movie. Thankfully,
the MovieLens dataset has more than just "ratings." It also contains
a table called "movies" that has a bunch of information about each
of these items, like titles and genres.

So we can get a better sense of the data by joining the “ratings”
and “movies” files. From now on, let’s include the genre and title
whenever | print results, because that's much more clear. So I'm
done with Step 1!

Step 2 is getting some generic recommendations from the
MovielLens dataset, just to see what happens. Let's just average
the ratings for each movie and print out a sorted list, with the best-
rated movies at the top. Uh...

Paper Birds? Bill

Hicks: Revelations? | have no idea what these movies are... but
they’re supposed to be good? They all have a perfect 5.0 average
rating. | would expect to see movies like Harry Potter or Titanic or |
dunno... The Avengers?

So let’s look at the data and see why these are perfect. Let's add a
count column to see how many people rated these movies so
highly... Okay, so these movies have a perfect 5.0 average rating
because only one person actually rated each of these! That doesn’t
really help me pick what to watch, because if | just wanted ONE
person’s opinion, I'd ask a friend who knows me!

We're using the MovieLens dataset to get a more general idea of
good movies. So let’s try only sorting movies with at least a certain
number of ratings. This is kind of arbitrary, but | guess I'd want at
least 20 people to weigh in before | trust an average rating.

Okay, now I've heard of most of these movies and | trust that
they’re actually sort of popular recommendations. But these movies
are all sorts of genres, so maybe | can narrow the list down a little
more based on what John-Green-bot and | usually watch. | like
action movies and John-Green-Bot likes romance movie.

There's actually one movie that’s on both of our recommended
lists: The Princess Bride!

Jabril: John-Green-Bot I've got the perfect movie. You're gonna
love it. It's got a love story, swords fights, the greatest movie line of
all time: “Hello, my name is Inigo Montoya, you killed my father,
prepare to die... John-Green-

Bot: Seen it. Let's watch something new. *sighs*... our lists don’t
have any other movies in common. So even though finding generic

1/3



Crash Course: Artificial Intelligence

https://nerdfighteria.info/v/ial W3CO4rcY

https:/lyoutube.com/watch?v=ialW3CO4rcY

Let's make a movie recommendation system: Crash Course Al #16

recommendations is sort of helpful, our Al system hasn’t found us a
new movie to watch together. What we're facing is the cold-start
problem we talked about in the last video.

The recommender system we’re programming doesn’t know
anything about John-Green-bot and me to make personalized
recommendations. So for Step 3, it's time to get personal! To
personalize our recommender system Al, we need to give it our
own movie data.

Okay, we've got two spreadsheets now, but | don't think that
they’re in the right format for LensKit, so | need to check the
documentation which is linked it in the description. It looks like |
need to import our spreadsheets and store the data in item-rating
pairs just like the original dataset. Thankfully, Python is great for
changing data formats.

As a sanity check to make sure | coded everything correctly, let's
print both of our ratings for The Princess Bride, since we know
we've both seen it. This all looks reasonable, so we're done with
Step 3! Remember, our goal is to program an Al to give us
personalized movie recommendations based on our ratings.

So, to make this happen, I'll implement User-User Collaborative
Filtering in Step 4. There are techniques like Item-Item
Collaborative Filtering, latent factor analysis, and others too, but the
User-User approach is pretty common and a nice first step to
understanding recommender systems. In multiple episodes of
Crash Course Al, we've talked about visualizing Al features on a
graph, whether it's petal lengths on a flower or weather and
swimmers.

As we add more features, we add more dimensions to that graph. In
user-user collaborative filtering, each item is its own dimension. So
if we have 10,000 movies in our dataset, that's 10,000 dimensions.

We’re not even going to try to visualize that, but we can understand
the logic behind user-user collaborative filtering with a two-movie
example. To be totally honest, this is going to be a pretty simplified
explanation of what the user-user algorithm does. Dealing with
thousands of dimensions and lots of missing data requires a lot of
clever linear algebra and statistics.

But | can use the LensKit library to do this math and understand
what's happening conceptually, without diving under the hood. So,
okay, let's say we have a graph where one axis is the movie
Inception and the other axis is The Notebook. And for this example,
we'll plot social ratings on it from everyone who has seen and
ranked both movies, such as John-Green-bot, me, and a bunch of
other people in the MovielLens dataset.

Some people may really like or hate both movies. | like Inception
but dislike The Notebook, and John-Green-bot is the opposite of
me. The user-user algorithm will try to cluster people who gave the
movies similar ratings.

This is a classic unsupervised learning approach, except there isn’'t
a “correct” size for these clusters, so | have to set parameters.
First, | have to set a minimum neighborhood size, or the minimum
number of people the algorithm should put in one cluster. Like, for
example, if | set the minimum neighborhood size to 5, when the
algorithm looks for people similar to John-Green-bot, it may select
this neat cluster here.

But if | set the minimum neighborhood size higher, the algorithm
may be forced to include some people who are less similar to each
other and John-Green-bot. | also have to set a maximum
neighborhood size, or the maximum number of people the algorithm
should put in one cluster. Again, having clusters that are too big

might give recommendations that are too generic and don't
consider individual taste enough.

After the algorithm has defined the cluster of people who like these
movies just about as much as John-Green-Bot, it can analyze what
those users have rated movies that John-Green-bot hasn’t seen
yet, such as Casablanca. Now, this is a classic supervised learning
problem. The user-user algorithm trains on past data from users in
the cluster to guess how much John-Green-bot would rate
Casablanca.

It might predict something like “4.6.” And then the algorithm will do
the same thing for all the other movies John-Green-bot hasn’t
seen, that his cluster-neighbors have. In the end, | want the
algorithm to give us a sorted list of the top 10 movies John-Green-
bot will probably like. There isn't really a “best” minimum and
maximum neighborhood size.

It really depends on what | want this Al to recommend. Different
parameters have different pros and cons. A small neighborhood
size would mean the Al considers fewer people who have more
similar movie tastes, and it has less data to make predictions.

So I'm more likely to run into the “Bill

Hicks: Revelations” situation from earlier which was when
recommendations of surprising or obscure movies were based on
what a few people like. A big neighborhood size would mean the Al
considers more people who have less similar movie tastes, and it
has more data to make predictions. So I'm more likely to get movie
recommendations that are generally popular and more widely
known. Figuring out the best approach to clustering requires a lot of
tinkering.

But if someone did work on it, they could make a video streaming
service that could recommend videos to billions of different people
online. YouTube. It's a joke on YouTube if you didn't get it.

For this movie night Al, I'll just set a minimum neighborhood size of
3 and maximum size of 15, because those seem reasonable. But
feel free to play around with those values in your own code to see
how it changes the recommendations. Now that the Al system has
run the user-user collaborative filtering algorithm and has clusters, |
can give it our personal ratings to get its top 10 recommended
movies for both John-Green-bot and me!

Now we're talking... show me what to watch! Remember, for each of
us, the user-user algorithm finds a neighborhood of similar users
based on their movie ratings compared to ours. The algorithm looks
for movies that people in that neighborhood have seen, and rated,
that we HAVEN'T seen yet.

And based on the ratings in our neighborhoods, the algorithm will
predict how we might rate each of those movies, and print a list of
its “top 10” recommendations for us. So now we have thoughtful
movie recommendations by our newly programmed Al, but there's
still a huge problem. John-Green-bot and | have to AGREE on a
movie to watch, and our “top 10" lists don't overlap at all because
we like such different things.

We need another STEP! This is the beauty of representing movies
we like as lists of numbers! | can create a Jabril-Green-bot hybrid!

Uh, but not a cyborg. Just a dataset. So if both of us have rated a
movie, I'll use the average of our ratings.

Using the two-axis graph of Inception and The Notebook from
before, this would place our Jabril-Green-bot hybrid around here.
And if only one of us has rated a movie, I'll just add that movie

2/3



Crash Course: Artificial Intelligence
https:/lyoutube.com/watch?v=ialW3CO4rcY
https://nerdfighteria.info/v/ial W3CO4rcY

Let's make a movie recommendation system: Crash Course Al #16

rating to the list. | know this isn't a perfect strategy.

Like, it's possible that | might hate some movie that | haven’t seen
but John-Green-Bot highly rated. But this keeps things simple, and
it should give a reasonable estimate across both of our ratings. Like
always when | reorganize data with code, | should do a quick sanity
check.

Let’s look at The Princess Bride again because | rated it as a 4.5
and John-Green-bot rated it as a 3.5, so I'd expect our combined list
would have it as a 4. Looks like everything checks out! So now, |
have a combined dataset of ratings that | can plug right into our
user-user collaborative filtering model from earlier.

And | SHOULD get a ranked list of 10 movies that we’ll both like!
The number one recommendation is Submarine which seems to be
a quirky movie from 2010. I've never heard of it, but I'm willing to
give it a try.

If that's too obscure for John-Green-bot, we could pick a different
recommendation from this list... like I've heard some good things
about True Grit. In fact, all these movies seem like they might have
some stuff we both like. At this point, | could also go back to step
4.1 and select different settings for my clusters.

Bigger neighborhoods would probably give me a more well-known
list of movies. But that list may also be a little less tailored to our
individual interests. Anyway, we know what we'll be watching this
weekend.

Anyone can use our spreadsheets as a template to enter their own
preferences and see some recommendations for themselves and
their friends. Of course, these spreadsheets don't have EVERY
MOVIE EVER -- that's just one of the limits of our smaller dataset.
By using one of the bigger datasets from MovieLens, anyone can
create a new set of spreadsheets for this project that does include
more movies.

But be warned that more movies will mean that all the math will take
a LOT longer to do before you get your recommendations! There’s
also nothing that limits our algorithm to just two people! You could
combine a ten-person movie club into one rating dataset to see
what results it comes up with.

Next time, we'll take a look at a different kind of recommendation
that we use all the time: search engines. I'll see ya then. Crash
Course Al is produced in association with PBS Digital Studios.

If you want to help keep Crash Course free for everyone, forever,
you can join our community on Patreon. And if you want some more
movie recommendations along with analysis, check out Crash
Course Film Criticism.

3/3


http://www.tcpdf.org

